# A Methodology for Product Development in Mobile Machinery: Case Example of an Excavator

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Multibody Systems

**α**contains values of the penalty term, as well as

**Ω**and

**ξ**, which are matrices for corresponding natural frequency and damping ratios of the penalty systems defined for each constraint condition [18,21,22].

#### 2.2. Hydraulics

#### 2.3. Collision and Soil Model

#### 2.4. Excavator Model

^{3}to a destination (a hopper). The carriage of the excavator was floated on the ground, which made it the only non-holonomic constraint in the model. The topological map of the excavator is presented in Figure 4. The chain of bodies of the excavator was contiguous and the structure of the excavator was robust in exposure to normal excavation maneuvers, so the flexibility of parts such as the arm and boom (rigid bodies) was minimal. For simplification of the topology, tracked parts of the excavator, which produced traction in interaction with the ground, are not illustrated in the figure.

## 3. Results

## 4. Analysis and Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Boschert, S.; Rosen, R. Digital twin—The simulation aspect. In Mechatronic Futures; Hehenberger, P., Bradley, D., Eds.; Springer: Cham, Switzerland, 2016; pp. 59–74. [Google Scholar] [CrossRef]
- Jahangirian, M.; Eldabi, T.; Naseer, A.; Stergioulas, L.K.; Young, T. Simulation In manufacturing and business: A review. Eur. J. Oper. Res.
**2010**, 203, 1–13. [Google Scholar] [CrossRef] - Shen, R.; Zhang, X.; Zhou, C. Dynamic Simulation of the Harvester Boom Cylinder. Machines
**2017**, 5, 13. [Google Scholar] [CrossRef] - Cuadrado, J.; Cardenal, J.; Bayo, E. Modeling and solution methods for efficient real-time simulation of multibody dynamics. Multibody Syst. Dyn.
**1997**, 1, 259–280. [Google Scholar] [CrossRef] - Tuegel, E.J.; Ingraffea, A.R.; Eason, T.G.; Spottswood, S.M. Reengineering aircraft structural life prediction using a digital twin. Int. J. Aerosp. Eng.
**2011**, 1–14. [Google Scholar] [CrossRef] - Becker, M.C.; Salvatore, P.; Zirpoli, F. The impact of virtual simulation tools on problem-solving and new product development organization. Res. Policy
**2005**, 34, 1305–1321. [Google Scholar] [CrossRef] - Balakrishnan, A.; Kumara, S.R.T.; Sundaresan, S. Manufacturing In the digital age: Exploiting information technologies for product realization. Inform. Syst. Front.
**1999**, 1, 25–50. [Google Scholar] [CrossRef] - Ullman, D.G. A taxonomy for mechanical design. Res. Eng. Des.
**1992**, 3, 179–189. [Google Scholar] [CrossRef] - Tukker, A.; Tischner, U. Product-services as a research field: Past, present and future. Reflections from a decade of research. J. Clean. Prod.
**2006**, 14, 1552–1556. [Google Scholar] [CrossRef] - Tomiyama, T.; Gu, P.; Jin, Y.; Lutters, D.; Kind, C.; Kimura, F. Design methodologies: Industrial and educational applications. CIRP Ann.
**2009**, 58, 543–565. [Google Scholar] [CrossRef][Green Version] - Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.H. Engineering Design. A Systematic Approach, 3rd ed.; Springer: London, UK, 2007. [Google Scholar]
- So, J.C.Y.; Proctor, R.W.; Dunston, P.S.; Wang, X. Better retention of skill operating a simulated hydraulic excavator after part-task than after whole-task training. Hum. Factors
**2013**, 55, 449–460. [Google Scholar] [CrossRef] - Beuren, F.H.; Ferreira, M.G.G.; Miguel, P.A.C. Product-service systems: A literature review on integrated products and services. J. Clean. Prod.
**2013**, 47, 222–231. [Google Scholar] [CrossRef] - Bernold, L.E. Quantitative assessment of backhoe operator skill. J. Constr. Eng. Manag.
**2007**, 133, 889–899. [Google Scholar] [CrossRef] - Baxter, D.; Roy, R.; Doultsinou, A.; Gao, J.; Kalta, M. A knowledge management framework to support product-service systems design. Int. J. Comput. Integr. Manuf.
**2009**, 22, 1073–1088. [Google Scholar] [CrossRef][Green Version] - Nemoto, Y.; Akasaka, F.; Shimomura, Y. A framework for managing and utilizing product–service system design knowledge. Prod. Plan. Control
**2015**, 26, 14–15. [Google Scholar] [CrossRef] - Shabana, A.A. Computational Dynamics, 3rd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2010. [Google Scholar]
- De Jalón, J.G.; Bayo, E. Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge; Springer: New York, NY, USA, 2012. [Google Scholar]
- Jiménez, J.M.; Avello, A.N.; de Jalón, J.G.; Avello, A.L. An efficient implementation of the velocity transformation method for real-time dynamics with illustrative examples. In Computational Dynamics in Multibody Systems; Pereira, M.F.O.S., Ambrósio, J.A.C., Eds.; Springer: Dordrecht, The Netherlands, 1995; pp. 15–35. [Google Scholar] [CrossRef]
- Avello, A.; Jiménez, J.M.; Bayo, E.; De Jalón, J.G. A simple and highly parallelizable method for real-time dynamic simulation based on velocity transformations. Comput. Methods Appl. Mech. Eng.
**1993**, 107, 313–339. [Google Scholar] [CrossRef] - Baharudin, M.E.; Rouvinen, A.; Korkealaakso, P.; Mikkola, A. Real-time multibody application for tree harvester truck simulator. Proc. Inst. Mech. Eng. K J. Mul.
**2014**, 228, 182–198. [Google Scholar] [CrossRef] - Korkealaakso, P.M.; Rouvinen, A.J.; Moisio, S.M.; Peusaari, J.K. Development of a real-time simulation environment. Multibody Syst. Dyn.
**2007**, 17, 177–194. [Google Scholar] [CrossRef] - Novak, P.; Guinot, V.; Jeffrey, A.; Reeve, D.E. Hydraulic Modelling: An Introduction, Principles, Methods and Applications, 1st ed.; CRC Press: London, UK, 2010. [Google Scholar] [CrossRef]
- Lai, K.C.; Kang, S.C. Collision detection strategies for virtual construction simulation. Automat. Constr.
**2009**, 18, 724–736. [Google Scholar] [CrossRef] - Hu, S.; Yu, L. Optimization of collision detection algorithm based on OBB. In Proceedings of the 2010 International Conference on Measuring Technology and Mechatronics Automation, Changsha City, China, 13–14 March 2010; IEEE: Piscataway, NJ, USA, 2010; Volume 2, pp. 853–855. [Google Scholar] [CrossRef]
- Negrini, S. On the Modelling of Deformable Tyre on Deformable Soil for Tread Pattern Design Optimization. Ph.D. Thesis, Politecnico di Milano, Milano, Italy, 26 March 2013. [Google Scholar]
- Dai, T.; Wang, Z.; Xu, S. Research of creating and fetching 3D models of virtual reality based on OpenGL. In Proceedings of the 2006 International Conference on Mechatronics and Automation, Luoyang, China, 25–28 June 2006; IEEE: Piscataway, NJ, USA, 2006; Volume 1, pp. 1991–1995. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Tan, J.; Fu, Y.; Wan, C. A virtual environment simulator for mechanical system dynamics with online interactive control. Adv. Eng. Softw.
**2006**, 37, 631–642. [Google Scholar] [CrossRef] - Xu, Z.; Xi, F.; Liu, L.; Chen, L. A Method for Design of Modular Reconfigurable Machine Tools. Machines
**2017**, 5, 5. [Google Scholar] [CrossRef] - Melville, C.; Yan, X.-T.; Gu, L. TiV-Model—An Attempt at Breaching the Industry Adoption Barrier for New Complex System Design Methodologies. In Mechatronic Futures; Hehenberger, P., Bradley, D., Eds.; Springer: Cham, Switzerland, 2016; pp. 41–57. [Google Scholar] [CrossRef]
- Panarotto, M.; Wall, J.; Bertoni, M.; Larsson, T.; Jonsson, P. Value-driven simulation: Thinking together through simulation in early engineering design. In Proceedings of the 21st International Conference on Engineering Design ICED17, Vancouver, BC, Canada, 21–25 August 2017; Volume 4, pp. 513–522. [Google Scholar]
- Hirth, M.; Hoßfeld, T.; Tran-Gia, P. Analyzing costs and accuracy of validation mechanisms for crowdsourcing platforms. Math. Comput. Model
**2013**, 57, 2918–2932. [Google Scholar] [CrossRef]

**Figure 9.**(

**a**) Comparison of pick force for three types of arm-attached cylinder; (

**b**) schematic for a sample trenching movement.

Property | Value/Units |
---|---|

Cylinder type | double acting |

Friction properties | defined as a spline |

Cylinder piston diameter | 190 mm |

Cylinder piston rod diameter | 95 mm |

Cylinder inner pipe inner diameter | not used |

Piston length | 150 mm |

Cylinder attachment length | 2150 mm |

Minimum stroke | 100 mm |

Maximum stroke | 1600 mm |

Cylinder material bulk modulus | 210 GPa |

Oil bulk modulus | 1.3 GPa |

Cylinder coefficient | 0.95 |

Leaks between cylinder chambers | 0.01 L/min |

Pressure difference for rated leak | 130 MPa |

End damper damping coefficient | 8.2 × 10^{7} N/m |

End damper spring coefficient | 3 × 10^{5} Nm/s |

Hydraulic end damper | not used |

Damper length | 0 |

Viscous damping coefficient | 0 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Alaei, N.; Kurvinen, E.; Mikkola, A. A Methodology for Product Development in Mobile Machinery: Case Example of an Excavator. *Machines* **2019**, *7*, 70.
https://doi.org/10.3390/machines7040070

**AMA Style**

Alaei N, Kurvinen E, Mikkola A. A Methodology for Product Development in Mobile Machinery: Case Example of an Excavator. *Machines*. 2019; 7(4):70.
https://doi.org/10.3390/machines7040070

**Chicago/Turabian Style**

Alaei, Nima, Emil Kurvinen, and Aki Mikkola. 2019. "A Methodology for Product Development in Mobile Machinery: Case Example of an Excavator" *Machines* 7, no. 4: 70.
https://doi.org/10.3390/machines7040070