# Modelling of Temperature Field and Stress–Strain State of the Workpiece with Plasma Coatings during Surface Grinding

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Thermal Model of Surface Grinding

_{cj}and υ

_{sj}are the components of the displacement vector in the coating layer and the substrate, respectively; σ

_{cx}and σ

_{sx}are normal stresses of the coating layer and the substrate, respectively; and ${{\tau}_{c}}_{xy}$ and ${{\tau}_{s}}_{xy}$ are shear stresses of the coating layer and the substrate, respectively.

## 3. Analysis of Structural Defects

## 4. Results

## 5. Simulation Results and their Analysis

## 6. Experimental Validation

## 7. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Malkin, S.; Guo, C. Thermal Analysis of Grinding. CIRP Ann.
**2007**, 56, 760–782. [Google Scholar] [CrossRef] - Rowe, W.B.; Morgan, M.N.; Batako, A.; Jin, T. Energy and temperature analysis in grinding. Trans. Eng. Sci.
**2003**, 44, 3–23. [Google Scholar] - González-Santander, J.L. Maximum Temperature in Dry Surface Grinding for High Peclet Number and Arbitrary Heat Flux Profile. Math. Probl. Eng.
**2016**, 9, 8470493. [Google Scholar] [CrossRef] - Brinksmeier, E.; Aurich, J.C.; Govekar, E.; Heinzel, C.; Hoffmeister, H.W.; Klocke, F.; Peters, J.; Rentsch, R.; Stephenson, D.J.; Uhlmann, E.; et al. Advances in modelling and simulation of grinding processes. CIRP Ann. Manuf. Technol.
**2006**, 55, 667–696. [Google Scholar] [CrossRef] - Deivanathan, R.; Vijayaraghavan, L. Theoretical analysis of thermal profile and heat transfer in grinding. Int. J. Mech. Mater. Eng.
**2013**, 8, 21–31. [Google Scholar] - Zhou, H.; Ding, W.; Liu, C. Material removal mechanism of PTMCs in high-speed grinding when considering consecutive action of two abrasive grains. Int. J. Adv. Manuf. Technol.
**2019**, 100, 153–165. [Google Scholar] [CrossRef] - Dai, C.; Ding, W.; Zhu, Y.; Xu, J.; Yu, H. Grinding temperature and power consumption in high speed grinding of Inconel 718 nickel-based superalloy with vitrified CBN wheels. Precis. Eng.
**2018**, 52, 192–200. [Google Scholar] [CrossRef] - Qian, N.; Ding, W.; Zhu, Y. Comparative investigation on grindability of K4125 and Inconel718 nickel-based superalloys. Int. J. Adv. Manuf. Technol.
**2018**, 97, 1649–1661. [Google Scholar] [CrossRef] - Gu, Y.; Li, H.; Du, B.; Ding, W. Towards the understanding of creep-feed deep grinding of DD6 nickel-based single-crystal superalloy. Int. J. Adv. Manuf. Technol.
**2019**, 100, 445–455. [Google Scholar] [CrossRef] - Zhang, L. Chapter 4: Numerical analysis and experimental investigation of energy partition and heat transfer in grinding. In Heat Transfer Phenomena and Applications; IntechOpen Ltd.: London, UK, 2012; pp. 79–98. [Google Scholar]
- Usov, A.V.; Batyrev, A.A. Mathematical modeling of the control processes of construction elements coatings on the basis of the singular integral equations. J. Mech. Eng.
**2010**, 13, 65–75. [Google Scholar] - Li, C.H.; Li, J.Y.; Wang, S.; Zhang, Q. Modeling and numerical simulation of the grinding temperature field with nanoparticle jet of MQL. Adv. Mech. Eng.
**2013**, 5, 986984. [Google Scholar] [CrossRef] - Masoumi, H.; Safavi, S.M.; Salehi, M. Grinding force, specific energy and material removal mechanism in grinding of HVOF-sprayed WC–Co–Cr coating. Mater. Manuf. Processes
**2014**, 29, 321–330. [Google Scholar] [CrossRef] - Youtsos, A.G. Residual Stress and Its Effects on Fatigue and Fracture; Springer: Dordrecht, Netherlands, 2006; pp. 15–26. [Google Scholar]
- Ding, W.F.; Zhang, L.C.; Li, Z.; Zhu, Y.J.; Su, H.H.; Xu, J.H. Review on grinding-induced residual stresses in metallic materials. Int. J. Adv. Manuf. Technol.
**2016**, 88, 2939–2968. [Google Scholar] [CrossRef] - Sundarrajan, K.D. Study of Grinding Burn Using Design of Experiments Approach and Advanced Kaizen Methodology. Master’s Thesis, University of Nebraska, Lincoln, NE, USA, May 2012. [Google Scholar]
- Badger, J.A.; Torrance, A. Burn awareness. Understanding the causes of grinding burn helps alleviate the problem. Cut. Tool Eng. Mag.
**2000**, 12, 52. [Google Scholar] - Agarwal, S.; Rao, P.V. Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SiC grinding. Int. J. Mach. Tools Manuf.
**2008**, 48, 698–710. [Google Scholar] [CrossRef] - Todd, R.I.; Derby, B. Thermal stress induced microcracking in alumina–20% SiCp composites. Acta Mater.
**2004**, 52, 1621–1629. [Google Scholar] [CrossRef] - Masoumi, H.; Safavi, S.M.; Salehi, M.; Nahvi, M. Effect of grinding on the residual stress and adhesion strength of HVOF thermally sprayed WC–10Co–4Cr coating. Mater. Manuf. Processes
**2014**, 29, 1139–1151. [Google Scholar] [CrossRef] - Vencl, A.; Arostegui, S.; Favaro, G.; Zivic, F.; Mrdak, M.; Mitrovic´, S.; Popovic, V. Evaluation of Adhesion/Cohesion Bond Strength of the Thick Plasma Spray Coatings by Scratch Testing on Coatings Cross-Sections. Tribol. Int.
**2011**, 44, 1281–1288. [Google Scholar] [CrossRef] - Nikolaev, A.G.; Tanchik, E.A. New addition theorems of basic solutions of the Lame equation for prolatespheroids and their application to modeling porous material. Aerosp. Tech. Technol.
**2014**, 5, 47–55. [Google Scholar] - Usov, A.V.; Vorobyova, L.A.; Smirnyi, S.G. Research of thermomechanical effects at grinding materials and alloys apt to crack rise. Eastern-Eur. J. Enterp. Technol.
**2015**, 2, 48–56. [Google Scholar] [CrossRef] - Tonkonogyi, V.; Yakimov, A.; Bovnegra, L. Increase of Performance of Grinding by Plate Circles; Springer International Publishing AG: Basel, Switzerland, 2018; pp. 121–127. [Google Scholar]
- Wojcik, R.; Wlazlo, J. Damage of the Surface Layer Gears in Grinding Process. Mech. Mech. Eng.
**2013**, 17, 317–323. [Google Scholar] - Grigoriev, S.N.; Volosova, M.A. Comprehensive analysis of internal and surface defects of ceramics. In Proceedings of the International Conference on Nanomaterial, Semiconductor and Composite Materials, Singapore, 21–22 May 2016. [Google Scholar]
- Costa, N.; Silva, F.S. Influence of process stages over fatigue crack behaviour of electroplated chromium coatings. In Proceedings of the 5th International Surface Engineering Congress, Washington State Convention Center, Seattle, WA, USA, 15–17 May 2006; pp. 97–101. [Google Scholar]
- Thirumalaikumarasamy, D.; Shanmugam, K.; Balasubramanian, V. Influences of atmospheric plasma spraying parameters on the porosity level of alumina coating on AZ31B magnesium alloy using response surface methodology. Prog. Nat. Sci. Mater. Int.
**2012**, 22, 468–479. [Google Scholar] [CrossRef] [Green Version] - Juzkova, R.; Ctibor, P.; Benes, V. Analysis of porous structure in plasma-sprayed coating. Image Anal. Stereol.
**2011**, 23, 45–52. [Google Scholar] [CrossRef] - Behera, A.; Mishra, S.C.; Behera, A.; Dhal, J.P. Porosity Analysis of Plasma Sprayed Coating by Application of Soft Computing. J. Mater.
**2013**, 6, 150671. [Google Scholar] [CrossRef] - Espinal, L. Porosity and Its Measurement. In Characterization of Materials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Du, H.; Chen, H.; Moom, B.K.; Shin, J.H.; Lee, S.W. Effect of Plasma Spraying Condition on Deposition Efficiency, Microstructure and Microhardness of TiO2 Coating. Adv. Technol. Mater. Mater. Process.
**2004**, 6, 152–157. [Google Scholar] - Tonkonogyi, V.M.; Sinkovskii, A.S.; Rybak, O.V. Analysis of characteristics of composite powders for plasma spraying based on ТіС–Ni(P)–Cu for the purpose of the coatings grinding CAD development. Cut. Tools Technol. Syst.
**2018**, 88, 216–223. [Google Scholar] - Tonkonogyi, V.; Usov, A.; Dašić, P.; Rybak, O.; Bovnegra, L. Modeling of temperature field and stress-strain state of the workpiece with plasma coatings during surface grinding. J. Res. Dev. Mech. Ind.
**2018**, 10, 81–90. [Google Scholar] - Sobhanverdi, R.; Akbari, A. Porosity and microstructural features of plasma sprayed Yttria stabilized Zirconia thermal barrier coatings. Ceram. Int.
**2015**, 41, 14517–14528. [Google Scholar] [CrossRef] - Kulkarni, A.; Vaidya, A.; Goland, A.; Sampath, S.; Herman, H. Processing effects on porosity-property correlations in plasma sprayed yttria-stabilized zirconia coatings. Mater. Sci. Eng.
**2003**, 359, 100–111. [Google Scholar] [CrossRef] - Muhammad, M.M.; Jalar, A.; Shamsudin, R.; Isa, M.C. Effect of plasma spray parameters on porosity of fly ash deposited coatings. AIP Conf. Proc.
**2014**, 1614, 116–121. [Google Scholar] - Kaßner, H.; Stuke, A.; Rödig, M.; Vaßen, R.; Stöver, D. Influence of porosity on thermal conductivity and sintering in suspension plasma sprayed thermal barrier coatings. Ceram. Eng. Sci. Proc.
**2009**, 29, 147–158. [Google Scholar] - Venkataraman, R.; Das, G.; Singh, S.R.; Pathak, L.C.; Ghosh, R.N.; Venkataraman, B.; Krishnamurthy, R. Study on influence of porosity, pore size, spatial and topological distribution of pores on microhardness of as plasma sprayed ceramic coatings. Mater. Sci. Eng.
**2007**, 445, 269–274. [Google Scholar] [CrossRef]

**Figure 5.**Estimated experimental results for the limit size values of grinding cracks during the process of plasma coatings grinding using abrasive wheels with following characteristics: 1–synthetic diamond bakelite-bonded grinding wheel with 80–100 μm grain size; 2—synthetic diamond metal-bonded grinding wheel with 200–250 μm grain size; 3–white aluminium oxide vitrified-bonded grinding wheel with 250–315 μm grain size.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Usov, A.V.; Tonkonogyi, V.M.; Dašić, P.V.; Rybak, O.V.
Modelling of Temperature Field and Stress–Strain State of the Workpiece with Plasma Coatings during Surface Grinding. *Machines* **2019**, *7*, 20.
https://doi.org/10.3390/machines7010020

**AMA Style**

Usov AV, Tonkonogyi VM, Dašić PV, Rybak OV.
Modelling of Temperature Field and Stress–Strain State of the Workpiece with Plasma Coatings during Surface Grinding. *Machines*. 2019; 7(1):20.
https://doi.org/10.3390/machines7010020

**Chicago/Turabian Style**

Usov, Anatoly V., Vladimir M. Tonkonogyi, Predrag V. Dašić, and Olga V. Rybak.
2019. "Modelling of Temperature Field and Stress–Strain State of the Workpiece with Plasma Coatings during Surface Grinding" *Machines* 7, no. 1: 20.
https://doi.org/10.3390/machines7010020