Temporal Domain Vibration Fault Diagnosis of Drone Blades via Selective Embedding
Abstract
1. Introduction
- A systematic comparison of traditional data loading and SE data loading strategies for UAV blade vibration diagnosis, highlighting the role of data loading in time domain aerospace signal analysis.
- An ablation study on a five label UAV blade dataset, demonstrating that SE improves classification accuracy, reduces performance variance, and enhances training stability without increasing computational cost.
- A shift from feature engineering to information presentation, demonstrating that the ordering, structure, and alternation of time-series vibration data influence what a model learns, establishing data loading as an underexplored design component in aerospace ML monitoring.
1.1. Data Loading Strategies
1.2. Existing Results
2. Materials and Methods
2.1. Dataset Description
2.2. Preprocessing and Signal Preparation
2.3. SE Data Loading Strategy
2.4. Deep Learning Architecture
- Traditional single-axis input (e.g., X-axis only).
- Traditional single-axis input (e.g., Y-axis only).
- Traditional single-axis input (e.g., Z-axis only).
2.5. Evaluation Metrics
2.6. Domain Evaluation
3. Results and Discussion
3.1. Ablation Study
3.1.1. Ablation Experimental Setup
3.1.2. Ablation Experimental Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| Adam | Adaptive moment estimation |
| BatchNorm | Batch normalization |
| CNN | Convolutional neural network |
| DAQ | Data acquisition |
| LSTM | Long short term memory |
| ML | Machine learning |
| ReLu | Rectified linear unit |
| SE | Selective embedding |
| UAV | Unmanned aerial vehicle |
References
- Ozkat, E.C. Vibration Data-Driven Anomaly Detection in UAVs: A Deep Learning Approach. Eng. Sci. Technol. Int. J. 2024, 54, 101702. [Google Scholar] [CrossRef]
- He, Y.; Fang, H.; Yan, J.; Yang, C.; Zhai, Y. Computationally Efficient UAV Fault Diagnosis with Adaptive Vibration Denoising: A Signal Processing Approach for Rotorcraft Systems. Mech. Syst. Signal Process. 2025, 240, 113413. [Google Scholar] [CrossRef]
- Adaika, Z.; Al-Haddad, L.A.; Giernacki, W.; Jaber, A.A.; Boumehraz, M.; Hamzah, M.N.; Flayyih, M.A. Fault Detection and Diagnosis Methodologies for Unmanned Aerial Vehicles: State-of-the-Art. J. Intell. Robot. Syst. 2025, 111, 63. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, Y.; Chen, L.; Wang, H.; Liu, B. Self-Attention Enhanced GraphSAGE for UAV Fault Diagnosis Using Vibration Signals. Sci. Rep. 2026, 16, 2004. [Google Scholar] [CrossRef]
- Zou, Y.; Xia, H.; Yang, X.; Li, P.; Yi, Y.; Zou, Y.; Xia, H.; Yang, X.; Li, P.; Yi, Y. Dynamics Model of a Multi-Rotor UAV Propeller and Its Fault Detection. Drones 2025, 9, 176. [Google Scholar] [CrossRef]
- Sonmezocak, T. Intelligent UAV Health Monitoring: Detecting Propeller and Structural Faults with MEMS-Based Vibration. Eng. Sci. Technol. Int. J. 2025, 69, 102130. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, M.; Feng, G.; Wang, D.; Xu, Y.; Gu, F. Few-Shot Learning Approaches for Fault Diagnosis Using Vibration Data: A Comprehensive Review. Sustainability 2023, 15, 14975. [Google Scholar] [CrossRef]
- Mowla, M.d.N.; Asadi, D.; Sohel, F. Real-Time Fault Detection in Multirotor UAVs Using Lightweight Deep Learning and High-Fidelity Simulation Data with Single and Double Fault Magnitudes. Complex Intell. Syst. 2025, 12, 62. [Google Scholar] [CrossRef]
- Shang, X.; Li, W.; Yuan, F.; Zhi, H.; Gao, Z.; Guo, M.; Xin, B.; Shang, X.; Li, W.; Yuan, F.; et al. Research on Fault Diagnosis of UAV Rotor Motor Bearings Based on WPT-CEEMD-CNN-LSTM. Machines 2025, 13, 287. [Google Scholar] [CrossRef]
- Al-Haddad, L.A.; Giernacki, W.; Shandookh, A.A.; Jaber, A.A.; Puchalski, R. Vibration Signal Processing for Multirotor UAVs Fault Diagnosis: Filtering or Multiresolution Analysis? Eksploat. i Niezawodn. Maint. Reliab. 2023, 26, 176318. [Google Scholar] [CrossRef]
- Yaman, O.; Yol, F.; Altinors, A. A Fault Detection Method Based on Embedded Feature Extraction and SVM Classification for UAV Motors. Microprocess. Microsyst. 2022, 94, 104683. [Google Scholar] [CrossRef]
- Puchalski, R.; Ha, Q.; Giernacki, W.; Nguyen, H.A.D.; Nguyen, L.V. PADRE—A Repository for Research on Fault Detection and Isolation of Unmanned Aerial Vehicle Propellers. J. Intell. Robot. Syst. 2024, 110, 74. [Google Scholar] [CrossRef]
- Azari, M.S.; Santini, S.; Edrisi, F.; Flammini, F. Self-Adaptive Fault Diagnosis for Unseen Working Conditions Based on Digital Twins and Domain Generalization. Reliab. Eng. Syst. Saf. 2025, 254, 110560. [Google Scholar] [CrossRef]
- Gaitan, M.; López Bautista, I.M.; Geist, J. Reduction of Calibration Uncertainty Due to Mounting of Three-Axis Accelerometers Using the Intrinsic Properties Model. Metrologia 2021, 58, 035006. [Google Scholar] [CrossRef]
- Jatiningrum, D.; van Paassen, M.; de Visser, C.C.; Chu, Q.P.; Mulder, M. Investigating Cross-Axis Sensitivity and Misalignment in an Angular Accelerometer Measurement Unit. In AIAA Guidance, Navigation, and Control Conference; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2011. [Google Scholar]
- Bruschi, P.; Nannini, A.; Paci, D.; Pieri, F. A Method for Cross-Sensitivity and Pull-in Voltage Measurement of MEMS Two-Axis Accelerometers. Sens. Actuators A Phys. 2005, 123–124, 185–193. [Google Scholar] [CrossRef]
- Structural Health Monitoring Damage Detection Systems for Aerospace; Sause, M.G.R., Jasiūnienė, E., Eds.; Springer Nature: Berlin/Heidelberg, Germany,, 2021. [Google Scholar]
- Kumar, D.; Mehran, S.; Shaikh, M.Z.; Hussain, M.; Chowdhry, B.S.; Hussain, T. Triaxial Bearing Vibration Dataset of Induction Motor under Varying Load Conditions. Data Brief 2022, 2, 108315. [Google Scholar] [CrossRef]
- Sehri, M.; Hua, Z.; de Assis Boldt, F.; Dumond, P. Selective Embedding for Deep Learning. Knowl. Based Syst. 2025, 330, 114535. [Google Scholar] [CrossRef]
- Apparatus & Procedures|Case School of Engineering. Available online: https://engineering.case.edu/bearingdatacenter/apparatus-and-procedures (accessed on 18 December 2025).
- Sehri, M.; Dumond, P. University of Ottawa Rolling-Element Dataset—Vibration and Acoustic Faults under Constant Load and Speed Conditions (UORED-VAFCLS). Mendeley Data 2023, 5. [Google Scholar] [CrossRef]
- Sehri, M.; Dumond, P. University of Ottawa Electric Motor Dataset—Vibration and Acoustic Faults under Constant and Variable Speed Conditions (UOEMD-VAFCVS). Mendeley Data 2023, 1. [Google Scholar] [CrossRef]
- Ding, A.; Qin, Y.; Wang, B.; Guo, L.; Jia, L.; Cheng, X. Evolvable Graph Neural Network for System-Level Incremental Fault Diagnosis of Train Transmission Systems. Mech. Syst. Signal Process. 2024, 210, 111175. [Google Scholar] [CrossRef]
- Sehri, M.; Ayres, L.M.; de Assis Boldt, F.; Dumond, P.; de Souza Leite Cuadros, M.A. An Accelerometer-Based Dataset for Monitoring Slag in Steel Manufacturing. BMC Res. Notes 2025, 18, 420. [Google Scholar] [CrossRef]
- Sehri, M.; Beatriz Cardoso, A.; de Assis Boldt, F.; Dumond, P. Industrial Steel Slag Flow Data Loading Method for Deep Learning Applications. Expert Syst. Appl. 2026, 300, 130457. [Google Scholar] [CrossRef]
- Li, C.; Wang, H.; Li, C.; Zhang, Y.; Feng, Y.; Zhang, X.; Negnevitsky, M. Coupled Noise-Aware UAV Fault Diagnosis Based on Learnable Wavelet Packet Transform and Scale-Graph Label Enhancement. IEEE Internet Things J. 2025, 12, 52913–52926. [Google Scholar] [CrossRef]
- Li, C.; Xie, W.; Zheng, B.; Yi, Q.; Yang, L.; Hu, B.; Deng, C. An Enhanced CLKAN-RF Framework for Robust Anomaly Detection in Unmanned Aerial Vehicle Sensor Data. Knowl. Based Syst. 2025, 319, 113690. [Google Scholar] [CrossRef]
- Al-Haddad, L.A.; Jaber, A.A.; Hamzah, M.N.; Kraiem, H.; Al-Karkhi, M.I.; Flah, A. Multiaxial Vibration Data for Blade Fault Diagnosis in Multirotor Unmanned Aerial Vehicles. Sci. Data 2025, 12, 1383. [Google Scholar] [CrossRef]
- Du, C.; Zhang, X.; Zhong, R.; Li, F.; Yu, F.; Rong, Y.; Gong, Y. Unmanned Aerial Vehicle Rotor Fault Diagnosis Based on Interval Sampling Reconstruction of Vibration Signals and a One-Dimensional Convolutional Neural Network Deep Learning Method. Meas. Sci. Technol. 2022, 33, 065003. [Google Scholar] [CrossRef]
- Baldini, A.; Felicetti, R.; Ferracuti, F.; Freddi, A.; Iarlori, S.; Monteriù, A. Real-Time Propeller Fault Detection for Multirotor Drones Based on Vibration Data Analysis. Eng. Appl. Artif. Intell. 2023, 123, 106343. [Google Scholar] [CrossRef]
- Tumer, I.Y.; Huff, E.M. Analysis of Triaxial Vibration Data for Health Monitoring of Helicopter Gearboxes. J. Vib. Acoust. 2003, 125, 120–128. [Google Scholar] [CrossRef]
- Huff, E.; Tumer, I.; Mcnames, J. An Analysis of Maneuvering Effects on Transmission Vibrations in an AH1 Cobra Helicopter. J. Am. Helicopter Soc. 2002, 47, 42–49. [Google Scholar] [CrossRef]
- Magliacano, D.; Tufano, V.; Letizia, A.; Sessa, B.; Filippi, M. Data-Driven Failure Criteria Prediction in Composite Wing Boxes Using Machine Learning. Compos. Struct. 2025, 373, 119675. [Google Scholar] [CrossRef]








| Field | Source Type | Model | Test Accuracy and Standard Deviation |
|---|---|---|---|
| Heavy Machinery | Bearing [18] | 1D-Convolutional Neural Network (CNN) | [19] |
| Bearing [20] | [19] | ||
| Bearing [21] | [19] | ||
| Induction Electrical Motor [22] | [19] | ||
| Railway | Railway [23] | [19] | |
| Manufacturing | Steel Slag [24] | CNN–long short term memory (LSTM) | [25] |
| Layers | Structures |
|---|---|
| 1 | Conv1d(1, 16, kernel_size = 7), BatchNorm1d(16), ReLU, MaxPool1d(kernel_size = 2, stride = 2) |
| 2 | Conv1d(16, 32, kernel_size = 5), BatchNorm1d(32), ReLU, MaxPool1d(kernel_size = 2, stride = 2) |
| 3 | Conv1d(32, 64, kernel_size = 3), BatchNorm1d(64), ReLU |
| 4 | AdaptiveMaxPool1d(output_size = 1) |
| 5 | Linear(64, 64), ReLU, Dropout |
| 6 | Linear(64, 5) |
| Domain Name | CSV Files of Blade Classes | ||||
|---|---|---|---|---|---|
| Healthy | Damaged Bottom Right Blade | Damaged Top Right Blade | Unbalanced Bottom Right Blade | Unbalanced Top Right Blade | |
| 1 | 0 to 100 k samples | 0 to 100 k samples | 0 to 100 k samples | 0 to 100 k samples | 0 to 100 k samples |
| 2 | 100 k to 200 k samples | 100 k to 200 k samples | 100 k to 200 k samples | 100 k to 200 k samples | 100 k to 200 k samples |
| 3 | 200 k to 300 k samples | 200 k to 300 k samples | 200 k to 300 k samples | 200 k to 300 k samples | 200 k to 300 k samples |
| 4 | 300 k to 400 k samples | 300 k to 400 k samples | 300 k to 400 k samples | 300 k to 400 k samples | 300 k to 400 k samples |
| Accelerometer Data Axis | ||||
|---|---|---|---|---|
| Method | Data Loading Type | x | y | z |
| A1 | Single Channel | x | ||
| A2 | Single Channel | x | ||
| A3 | Single Channel | x | ||
| A4 | Parallel Loading | x | x | x |
| M5 | SE | x | x | x |
| % and Standard Deviation | ||||||
|---|---|---|---|---|---|---|
| Method | Precision | Recall | F1-Score | Validation Accuracy | Test Accuracy | Time for Training (s) |
| A1 | 0.947 | 0.940 | 0.949 | 96.07 | 58.15 | |
| A2 | 0.956 | 0.955 | 0.955 | 96.46 | 59.27 | |
| A3 | 0.957 | 0.958 | 0.954 | 97.31 | 59.52 | |
| A4 | 0.955 | 0.954 | 0.955 | 97.42 | 178.15 | |
| M5 | 0.963 | 0.963 | 0.964 | 98.06 | 58.22 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sehri, M.; Yan, T.; Chauhan, S.; Vashishtha, G. Temporal Domain Vibration Fault Diagnosis of Drone Blades via Selective Embedding. Machines 2026, 14, 241. https://doi.org/10.3390/machines14020241
Sehri M, Yan T, Chauhan S, Vashishtha G. Temporal Domain Vibration Fault Diagnosis of Drone Blades via Selective Embedding. Machines. 2026; 14(2):241. https://doi.org/10.3390/machines14020241
Chicago/Turabian StyleSehri, Mert, Tongtong Yan, Sumika Chauhan, and Govind Vashishtha. 2026. "Temporal Domain Vibration Fault Diagnosis of Drone Blades via Selective Embedding" Machines 14, no. 2: 241. https://doi.org/10.3390/machines14020241
APA StyleSehri, M., Yan, T., Chauhan, S., & Vashishtha, G. (2026). Temporal Domain Vibration Fault Diagnosis of Drone Blades via Selective Embedding. Machines, 14(2), 241. https://doi.org/10.3390/machines14020241

