Multi-Criteria Selection of FFF-Printed Gyroid Sandwich Structures in PLA and PLA–Flax Using AHP–TOPSIS
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials, Printing Setup and Mechanical Testing
- breakage of the lower skin due to traction;
- core–skin delamination due to poor interlayer adhesion;
- collapse or instability of gyroid cells (localized buckling).
2.2. Estimation of Material Cost and Printing Energy
3. Multi-Criteria Decision-Making (MCDM) Framework
3.1. Identification of Criteria and Alternatives
3.2. The AHP Method
3.3. The TOPSIS Approach
- Acquisition of input data: once the criteria Cj (j = 1, …, m) and the alternatives Ai (i = 1, …, n) have been defined, the weights of the criteria wj and the performance scores of the alternatives with respect to each criterion are collected. These performance scores constitute the elements of the decision matrix Z, where the generic element zij represents the evaluation of alternative Ai with respect to criterion Cj.
- Construction of the weighted normalized decision matrix R: the decision matrix Z is transformed into the weighted normalized decision matrix R through normalization and weighting procedures. The generic element rij of matrix R is computed according to the following equation.where tij denotes the normalized value of the element zij, as computed according to the following equation:
- Determination of the positive ideal solution (PIS)and the negative ideal solution (NIS)
- 4.
- Computation of separation measures: for each alternative Ai, the separation distances from the positive ideal solution PIS and from the negative ideal solution NIS are calculated with the following relations.
- 5.
- Evaluation of the relative closeness coefficient (Si): the relative closeness coefficient quantifies the proximity of each alternative to the ideal solution. Higher values of Si indicate alternatives that are closer to the positive ideal solution and thus more preferable, enabling the ranking of alternatives accordingly.
4. Results and Discussion
Sensitivity Analysis of Criteria Weights
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Islam, M.A.; Mobarak, M.H.; Rimon, M.I.H.; Al Mahmud, M.Z.; Ghosh, J.; Ahmed, M.M.S.; Hossain, N. Additive Manufacturing in Polymer Research: Advances, Synthesis, and Applications. Polym. Test. 2024, 132, 108364. [Google Scholar] [CrossRef]
- Afonso, J.A.; Alves, J.L.; Caldas, G.; Gouveia, B.P.; Santana, L.; Belinha, J. Influence of 3D Printing Process Parameters on the Mechanical Properties and Mass of PLA Parts and Predictive Models. Rapid Prototyp. J. 2021, 27, 487–495. [Google Scholar] [CrossRef]
- Nikooharf, M.H.; Shirinbayan, M.; Arabkoohi, M.; Bahlouli, N.; Fitoussi, J.; Benfriha, K. Machine Learning in Polymer Additive Manufacturing: A Review. Int. J. Mater. Form. 2024, 17, 52. [Google Scholar] [CrossRef]
- Xames, M.D.; Torsha, F.K.; Sarwar, F. A Systematic Literature Review on Recent Trends of Machine Learning Applications in Additive Manufacturing. J. Intell. Manuf. 2023, 34, 2529–2555. [Google Scholar] [CrossRef]
- Kamarian, S.; Khalvandi, A.; Heidarizadi, E.; Saber-Samandari, S.; Song, J. Prediction and Optimization of 3D-Printed Sandwich Beams with Chiral Cores. Int. J. Mech. Sci. 2024, 262, 108747. [Google Scholar] [CrossRef]
- Zaharia, S.M.; Enescu, L.A.; Pop, M.A. Mechanical Performances of Lightweight Sandwich Structures Produced by Material Extrusion-Based Additive Manufacturing. Polymers 2020, 12, 1740. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Todoroki, A.; Liu, T.; Wu, L.; Hou, Z.; Ueda, M.; Hirano, Y.; Matsuzaki, R.; Mizukami, K.; Iizuka, K.; et al. 3D Printing of Continuous Fiber Reinforced Polymer Composites: Development, Application, and Prospective. Chin. J. Mech. Eng. Addit. Manuf. Front. 2022, 1, 100016. [Google Scholar] [CrossRef]
- Harish, A.; Alsaleh, N.A.; Ahmadein, M.; Elfar, A.A.; Djuansjah, J.; Hassanin, H.; El-Sayed, M.A.; Essa, K. Designing Lightweight 3D-Printable Bioinspired Structures for Enhanced Compression and Energy Absorption Properties. Polymers 2024, 16, 729. [Google Scholar] [CrossRef]
- Lee, J.J.; Mohammed, A.A.; Pullen, A.; Myant, C.W.; Proud, W.G. Mechanical Characterisation of 3D Printed Lightweight Lattice Structures with Varying Internal Design Alterations. Mater. Today Commun. 2023, 36, 106456. [Google Scholar] [CrossRef]
- Abueidda, D.W.; Elhebeary, M.; Shiang, C.-S.; Pang, S.; Abu Al-Rub, R.K.; Jasiuk, I.M. Mechanical Properties of 3D Printed Polymeric Gyroid Cellular Structures: Experimental and Finite Element Study. Mater. Des. 2019, 165, 107597. [Google Scholar] [CrossRef]
- Marabello, G.; Chairi, M.; Di Bella, G. Optimising Additive Manufacturing to Produce PLA Sandwich Structures by Varying Cell Type and Infill: Effect on Flexural Properties. J. Compos. Sci. 2024, 8, 360. [Google Scholar] [CrossRef]
- Calabrese, L.; Marabello, G.; Chairi, M.; Di Bella, G. Optimization of Deposition Temperature and Gyroid Infill to Improve Flexural Performance of PLA and PLA–Flax Fiber Composite Sandwich Structures. J. Manuf. Mater. Process. 2025, 9, 31. [Google Scholar] [CrossRef]
- Gonabadi, H.; Hosseini, S.F.; Chen, Y.; Bull, S. Structural Analysis of Small-Scale 3D Printed Composite Tidal Turbine Blades. Ocean Eng. 2024, 306, 118057. [Google Scholar] [CrossRef]
- Torre, R.; Brischetto, S. Experimental Characterization and Finite Element Validation of Orthotropic 3D-Printed Polymeric Parts. Int. J. Mech. Sci. 2022, 219, 107095. [Google Scholar] [CrossRef]
- Castro-Aguirre, E.; Iñiguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly(Lactic Acid)—Mass Production, Processing, Industrial Applications, and End of Life. Adv. Drug Deliv. Rev. 2016, 107, 333–366. [Google Scholar] [CrossRef]
- Otieno, D.B.; Bosire, G.O.; Onyari, J.M.; Mwabora, J.M. Advances in 3-D Printing: Polymers, Fabrication Mechanisms, Mass Balance Models and Applications. Discov. Polym. 2024, 1, 10. [Google Scholar] [CrossRef]
- Siddiqui, M.A.S.; Rabbi, M.S.; Ahmed, R.U.; Billah, M.M. Biodegradable Natural Polymers and Fibers for 3D Printing: A Holistic Perspective on Processing, Characterization, and Advanced Applications. Clean Mater. 2024, 14, 100275. [Google Scholar] [CrossRef]
- Bi, X.; Huang, R. 3D Printing of Natural Fiber and Composites: A State-of-the-Art Review. Mater. Des. 2022, 222, 111065. [Google Scholar] [CrossRef]
- Somsuk, N.; Pramoonmak, S.; Chongkolnee, B.; Tipboonsri, P.; Memon, A. Enhancing Mechanical Properties of 3D-Printed PLA Composites Reinforced with Natural Fibers: A Comparative Study. J. Compos. Sci. 2025, 9, 180. [Google Scholar] [CrossRef]
- Mazur, K.E.; Borucka, A.; Kaczor, P.; Gądek, S.; Bogucki, R.; Mirzewiński, D.; Kuciel, S. Mechanical, Thermal and Microstructural Characteristic of 3D Printed Polylactide Composites with Natural Fibers: Wood, Bamboo and Cork. J. Polym. Environ. 2022, 30, 2341–2354. [Google Scholar] [CrossRef]
- Raigar, J.; Sharma, V.S.; Srivastava, S.; Chand, R.; Singh, J. A Decision Support System for the Selection of an Additive Manufacturing Process Using a New Hybrid MCDM Technique. Sādhanā 2020, 45, 101. [Google Scholar] [CrossRef]
- Ren, D.; Choi, J.-K.; Schneider, K. A Multicriteria Decision-Making Method for Additive Manufacturing Process Selection. Rapid Prototyp. J. 2022, 28, 77–91. [Google Scholar] [CrossRef]
- Raja, S.; Praveenkumar, V.; Rusho, M.A.; Yishak, S. Optimizing Additive Manufacturing Parameters for Graphene-Reinforced PETG Impeller Production: A Fuzzy AHP-TOPSIS Approach. Results Eng. 2024, 24, 103018. [Google Scholar] [CrossRef]
- Raja, S.; Jayalakshmi, M.; Rusho, M.A.; Selvaraj, V.K.; Subramanian, J.; Yishak, S.; Kumar, T.A. Fused Deposition Modeling Process Parameter Optimization on the Development of Graphene Enhanced Polyethylene Terephthalate Glycol. Sci. Rep. 2024, 14, 30744. [Google Scholar] [CrossRef]
- Raman, V.V.; Badarinath, R.; Prabhu, V.V. TOPSIS-Based Methodology for Selecting Fused Filament Fabrication Machines. Machines 2025, 13, 574. [Google Scholar] [CrossRef]
- Salmi, A.; Vecchi, G.; Atzeni, E.; Iuliano, L. Hybrid Multi-Criteria Decision Making for Additive or Conventional Process Selection in the Preliminary Design Phase. Designs 2024, 8, 110. [Google Scholar] [CrossRef]
- Abas, M.; Habib, T.; Noor, S.; Zimon, D.; Woźniak, J. Application of Multi-Criteria Decision-Making Methods in the Selection of Additive Manufacturing Materials for Solid Ankle Foot Orthoses. J. Eng. Des. 2023, 34, 616–643. [Google Scholar] [CrossRef]
- Akhoundi, B.; Modanloo, V. A Multi-Criteria Decision-Making Analysis on the Extrusion-Based Additive Manufacturing of ABS/Cu Composites. Int. J. Interact. Des. Manuf. (IJIDeM) 2023, 17, 1995–2003. [Google Scholar] [CrossRef]
- Sartini, M.; Luca, M.; Claudio, F.; Marco, M. A Multi-Criteria Decision-Making Approach to Optimize the Part Build Orientation in Additive Manufacturing. Proc. Des. Soc. 2023, 3, 293–302. [Google Scholar] [CrossRef]
- Dimitrellou, S.; Strantzali, E.; Iakovidis, I. A Decision-Making Strategy for Selection of FDM-Based Additively Manufactured Thermoplastics for Industrial Applications Based on Material Attributes. Sustain. Futures 2025, 9, 100640. [Google Scholar] [CrossRef]
- Junaid, M.; uz Zaman, U.K.; Naseem, A.; Ahmad, Y.; Aqeel, A.B. Material Selection in Additive Manufacturing for Aerospace Applications Using Multi-Criteria Decision Making. MATEC Web Conf. 2024, 398, 01012. [Google Scholar] [CrossRef]
- Mazumdar, N.; Kumar Sharma, J.; Navruzbek Shavkatovich, S.; Uike, D.; Kadam, S.; Verma, M.; Jaber Alam, M.; Sharma, A.; Thakur, A.; Saleh Al Ansari, M. Application of Distinct Multi Criteria Decision Analysis Techniques in the Manufacturing Sector: A Comprehensive Review. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Gil-García, I.C.; Ramos-Escudero, A.; Serrano-Gómez, L.; Fernández-Guillamón, A. Multi-Criteria Decision-Making. In Smart Choices for Clean Energy; Springer Nature: Cham, Switzerland, 2025; pp. 17–45. [Google Scholar]
- Zhou, L.; Miller, J.; Vezza, J.; Mayster, M.; Raffay, M.; Justice, Q.; Al Tamimi, Z.; Hansotte, G.; Sunkara, L.D.; Bernat, J. Additive Manufacturing: A Comprehensive Review. Sensors 2024, 24, 2668. [Google Scholar] [CrossRef]
- Sapkal, S.U.; Warule, P.H. Application of Multi-Attribute Decision Making Methods for Fused Deposition Modelling. In Sustainability for 3D Printing; Sandhu, K., Singh, S., Prakash, C., Subburaj, K., Ramakrishna, S., Eds.; Springer: Cham, Switzerland, 2022; pp. 55–75. [Google Scholar]
- Saaty, T.L. A Scaling Method for Priorities in Hierarchical Structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making for Leaders: The Analytic Hierarchy Process for Decisions in a Complex World, 3rd ed.; RWS Publications: Pittsburgh, PA, USA, 2012. [Google Scholar]
- Hwang, C.-L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications a State-of-the-Art Survey; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Giallanza, A.; Micale, R. A Structured Framework for Evaluating Logistics Networks: A Multidimensional Approach. In Technology and Science for the Ships of the Future; Rizzuto, E., Ruggiero, V., Eds.; IOS Press: Amsterdam, The Netherlands, 2025. [Google Scholar]
- Demir, G.; Chatterjee, P.; Pamucar, D. Sensitivity Analysis in Multi-Criteria Decision Making: A State-of-the-Art Research Perspective Using Bibliometric Analysis. Expert Syst. Appl. 2024, 237, 121660. [Google Scholar] [CrossRef]

| Criteria | wj |
|---|---|
| C1—Flexural strength [MPa] | 0.715 |
| C2—Material cost [EUR] | 0.098 |
| C3—Energy consumption during printing process [kWh] | 0.187 |
| Alternatives | (C1) Mechanical [MPa] | (C2) Economic [EUR] | (C3) Environmental [kWh] |
|---|---|---|---|
| PLA | |||
| 200 °C/20% | 25 | 0.55 | 0.029 |
| 200 °C/30% | 25 | 0.66 | 0.035 |
| 220 °C/20% | 23 | 0.53 | 0.029 |
| 220 °C/30% | 23 | 0.63 | 0.035 |
| PLA–Flax | |||
| 200 °C/20% | 15 | 1.54 | 0.043 |
| 200 °C/30% | 19 | 1.95 | 0.053 |
| 220 °C/20% | 15 | 1.56 | 0.043 |
| 220 °C/30% | 19 | 1.97 | 0.053 |
| # | Alternatives | Si |
|---|---|---|
| 1 | PLA/200 °C/20% | 0.9952 |
| 2 | PLA/200 °C/30% | 0.9282 |
| 3 | PLA/220 °C/20% | 0.8207 |
| 4 | PLA/220 °C/30% | 0.8039 |
| 5 | PLA–Flax/200 °C/30% | 0.3493 |
| 6 | PLA–Flax/220 °C/30% | 0.3487 |
| 7 | PLA–Flax/200 °C/20% | 0.1343 |
| 8 | PLA–Flax/220 °C/20% | 0.1327 |
| Criteria | wj | ||
|---|---|---|---|
| Scenario 1 (>Cost Criterion) | Scenario 2 (>Consumption Criterion) | Scenario 3 Balanced | |
| C1—Flexural strength [MPa] | 0.25 | 0.25 | 0.33 |
| C2—Material cost [EUR] | 0.50 | 0.25 | 0.33 |
| C3—Energy consumption during printing process [kWh] | 0.25 | 0.50 | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Parisi, M.; Di Bella, G. Multi-Criteria Selection of FFF-Printed Gyroid Sandwich Structures in PLA and PLA–Flax Using AHP–TOPSIS. Machines 2026, 14, 162. https://doi.org/10.3390/machines14020162
Parisi M, Di Bella G. Multi-Criteria Selection of FFF-Printed Gyroid Sandwich Structures in PLA and PLA–Flax Using AHP–TOPSIS. Machines. 2026; 14(2):162. https://doi.org/10.3390/machines14020162
Chicago/Turabian StyleParisi, Mariasofia, and Guido Di Bella. 2026. "Multi-Criteria Selection of FFF-Printed Gyroid Sandwich Structures in PLA and PLA–Flax Using AHP–TOPSIS" Machines 14, no. 2: 162. https://doi.org/10.3390/machines14020162
APA StyleParisi, M., & Di Bella, G. (2026). Multi-Criteria Selection of FFF-Printed Gyroid Sandwich Structures in PLA and PLA–Flax Using AHP–TOPSIS. Machines, 14(2), 162. https://doi.org/10.3390/machines14020162

