On the Lightning Attachment Process of Wind Turbine–Observation, Experiments and Modelling
Abstract
1. Introduction
2. Field Observation of Lightning Strikes to Wind Turbine
2.1. Statistics and Damage Patterns of Lightning Strikes on Wind Turbine Blades
2.2. The Distribution of Lightning Striking Points on Wind Turbine Blades
2.3. The Type and Characteristics of Lightning Discharge to Wind Turbine Blades
2.4. The Monitoring of Lightning Current Parameters
3. Experimental Work on Lightning Attachment Manner to Wind Turbine
3.1. Test Specimen
3.2. Electrode Configuration
3.3. The Selection of Waveform
3.4. The Characteristics of Lightning Attachment Manner of Different Kinds of Blade Receptor
3.5. The Influence of Blade Rotation on the Lightning Attachment Manner to the Blade
3.6. The Influence of Surface Condition on Lightning Attachment Manner to Wind Turbine Blade
4. Model of Lightning Attachment Process of Wind Turbine
4.1. From Electro-Geometrical Model to Leader Progression Model
4.2. The Influence of Space Charge on the Model
5. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Global Wind Energy Council. Global Wind Report 2024; Global Wind Energy Council: Brussels, Belgium, 2024. [Google Scholar]
- Glushakow, B. Effective lightning protection for wind turbine generators. IEEE Trans. Energy Convers. 2007, 22, 214–222. [Google Scholar] [CrossRef]
- Cotton, I.; McNiff, B.; Soerenson, T.; Zischank, W.; Christiansen, P.; Hoppe-Kilpper, M.; Ramakers, S.; Pettersson, P.; Muljadi, E. Lightning protection for wind turbines. In Proceedings of the 25th International Conference on Lightning Protection (ICLP2000), Rhodes, Greece, 18–22 September 2000; pp. 848–853. [Google Scholar]
- Wada, A. Lightning damages of wind turbine blades in winter in japan-Lightning observation on the nikaho-kogen wind farm. In Proceedings of the 27th International Conference on Lightning Protection (ICLP2004), Avignon, France, 13–16 September 2004; pp. 1–6. [Google Scholar]
- Garolera, A.C.; Madsen, S.F.; Nissim, M.; Myers, J.D.; Holboell, J. Lightning damage to wind turbine blades from wind farms in the US. IEEE Trans. Power Deliv. 2014, 31, 1043–1049. [Google Scholar] [CrossRef]
- Chen, W.; He, T.; Bian, K.; He, H.; Xiang, N.; Shi, W.; Li, X.; Zhang, S.; Sun, T.; Li, Z.; et al. Review of research on lightning damage and protection of wind turbine blades. High Volt Eng. 2019, 45, 1–15. [Google Scholar]
- Wang, D.; Takagi, N.; Watanabe, T.; Sakurano, H.; Hashimoto, M. Observed characteristics of upward leaders that are initiated from a windmill and its lightning protection tower. Geophys. Res. Lett. 2008, 35, L02803. [Google Scholar] [CrossRef]
- Wang, D.; Takagi, N. Typical characteristics of upward lightning observed in Japanese winter thunderstorm and their physical implications. In Proceedings of the 14th International Conference of Atmospheric Electricity, Rio de Janeiro, Brazil, 8–12 August 2011; pp. 1–5. [Google Scholar]
- Harrell, T.M.; Madsen, S.F.; Thomsen, O.T.; Dulieu-Barton, J.M. On the Effect of Dielectric Breakdown in UD CFRPs Subjected to Lightning Strike Using an Experimentally Validated Model. Appl. Compos. Mater. 2022, 29, 1321–1348. [Google Scholar] [CrossRef]
- Madsen, S.F.; Carloni, L. Lightning exposure of Carbon Fiber Composites in wind turbine blades. In Proceedings of the 24th Nordic Insulation Symposium on Materials, Components and Diagnostics, Copenhagen, Denmark, 15–17 June 2015. [Google Scholar]
- Guo, Z.; Yu, W.; Fang, Z.; Zhang, M.; Li, H.; Li, Q.; Siew, W.H. The influence of the metal mesh to the attachment manner of CFRP wind turbine blades. In Proceedings of the 11th Asia-Pacific International Conference on Lightning (APL-2019), Hong Kong, China, 12–14 June 2019; pp. 1–4. [Google Scholar]
- Li, Q.; Ma, Y.; Guo, Z.; Ren, H.; Wang, G.; Arif, W.; Fang, Z.; Siew, W.H. The Lightning Striking Probability for Offshore Wind Turbine Blade with Salt Fog Contamination. J. Appl. Phys. 2017, 122, 073301. [Google Scholar] [CrossRef]
- Torchio, R.; Nicora, M.; Mestriner, D.; Brignone, M.; Procopio, R.; Alotto, P.; Rubinstein, M. Do Wind Turbines Amplify the Effects of Lightning Strikes? A Full-Maxwell Modelling Approach. IEEE Trans. Power Del. 2022, 37, 3996–4006. [Google Scholar] [CrossRef]
- Torchio, R.; Nicora, M.; Mestriner, D.; Brignone, M.; Procopio, R.; Alotto, P.; Rubinstein, M. Full-Wave Analysis of Wind Turbine Transient Response to Direct Lightning Strikes. In Proceedings of the 17th International Symposium on Lightning Protection (SIPDA 2023), Suzhou, China, 9–13 October 2023. [Google Scholar]
- IEC 61400-24; 2019 Wind Turbine Generator Systems—Part 24: Lightning Protection. IEC: Genève, Switzerland, 2019.
- Shindo, T.; Asakawa, A.; Miki, M. A study of lightning striking characteristics to wind turbines. In Proceedings of the 29th International Conference on Lightning Protection (ICLP2008), Uppsala, Sweden, 23–26 June 2008; pp. 9c-4-1–9c-4-9. [Google Scholar]
- Madsen, S.F.; Erichsen, H.V. Numerical model to determine lightning attachment point distributions on wind turbines according to the revised IEC 61400-24. In Proceedings of the International Conference on Lightning and Static Electricity (ICOLSE2009), Pittsfield, MA, USA, 15–17 September 2009; pp. 15–17. [Google Scholar]
- Madsen, S.F.; Mieritz, C.F.; Garolera, A.C. Numerical tools for lightning protection of wind turbines. In Proceedings of the 2013 International Conference on Lightning and Static Electricity (ICOLSE2013), Seattle, WA, USA, 18–20 September 2013; pp. SEA13-2.1–SEA13-2.6. [Google Scholar]
- Madsen, S.F. Interaction Between Electrical Discharges and Materials for Wind Turbine Blades-Particularly Related to Lightning Protection. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark, 2006. [Google Scholar]
- Zhang, L.; Lao, H.; Wang, G.; Zou, L.; Zhao, T.; Fang, Z. A new method for spatial allocation of turbines in a wind farm based on lightning protection efficiency. Wind. Energy 2019, 22, 1310–1323. [Google Scholar] [CrossRef]
- Long, M.; Becerra, M.; Thottappillil, R. On the attachment of dart lightning leaders to wind turbines. Electr. Power Syst. Res. 2017, 151, 432–439. [Google Scholar] [CrossRef]
- Becerra, M.; Long, M.; Schulz, W.; Thottappillil, R. On the estimation of the lightning incidence to offshore wind farms. Electr. Power Syst. Res. 2018, 157, 211–226. [Google Scholar] [CrossRef]
- Nie, J.; Xiang, N.; Li, K.; Chen, W. Multiple wind turbines shielding model of lightning attractiveness for mountain wind farms. Electr. Power Syst. Res. 2023, 224, 109727. [Google Scholar] [CrossRef]
- Yasuda, Y.; Yokoyama, S. Proposal of lightning damage classification to wind turbine blades. In Proceedings of the 7th Asia-Pacific International Conference on Lightning (APL2011), Chengdu, China, 1–4 November 2011; pp. 368–371. [Google Scholar]
- Yasuda, Y.; Yokoyama, S.; Ideno, M. Classification of lightning damage to wind turbine blades. In Proceedings of the 31st International Conference on Lightning Protection (ICLP2012), Vienna, Austria, 16–20 September 2012; pp. 559–566. [Google Scholar]
- Yokoyama, S.; Yasuda, Y.; Minowa, M.; Sekioka, S.; Yamamoto, K.; Honjo, N.; Sato, T. Clarification of the mechanism of wind turbine blade damage taking lightning characteristics into consideration and relevant research project. In Proceedings of the 31st International Conference on Lightning Protection (ICLP2012), Vienna, Austria, 16–20 September 2012; pp. 1–6. [Google Scholar]
- Madsen, S.F.; Holbøll, J.; Henriksen, M.; Bertelsen, K.; Erichsen, H.V. New test method for evaluating the lightning protection system on wind turbine blades. In Proceedings of the 28th International Conference on Lightning Protection (ICLP2006), Kanazawa, Japan, 17–21 September 2006; pp. 1497–1502. [Google Scholar]
- Garolera, A.C. Lightning Protection of Flap System for Wind Turbine Blades. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark, 2014. [Google Scholar]
- Guo, Z. The Polarity Effect of Lightning Attachment on Wind Turbine Blade and Risk Assessment Method. Ph.D. Thesis, North China Electric Power University, Beijing, China, 2020. [Google Scholar]
- Wilson, N.; Myers, J.; Hutchinson, M. Lightning attachment to wind turbines in central Kansas: Video observations, correlation with the NLDN and in-situ peak current measurements. In Proceedings of the European Wind Energy Association, Vienna, Austria, 4–7 February 2013; pp. 284–291. [Google Scholar]
- Montanyà, J.; Velde, O.; Williams, E.R. Lightning discharges produced by wind turbines. J. Geophys. Res. Atmos. 2014, 119, 1455–1462. [Google Scholar] [CrossRef]
- Ishii, M.; Saito, M.; Natsuno, D.; Sugita, A. Lightning incidence on wind turbines in winter. In Proceedings of the 32nd International Conference on Lightning Protection (ICLP2014), Shanghai, China, 12–17 October 2014; pp. 1734–1738. [Google Scholar]
- Alonso, M.A.; Irastorza, D.C. Dynamic Wind Turbine Lightning Protection Behaviour under Storm Conditions. In Proceedings of the 29th International Conference on Lightning Protection (ICLP2008), Uppsala, Sweden, 23–26 January 2008. [Google Scholar]
- Cai, L.; Ke, Y.; Fan, W.; Yan, R.; Zhou, M.; Wang, J.; Fan, Y. Observation of an upward lightning flash with 21 upward positive leaders initiated from different wind turbines in wind farm. High Volt. 2024, 9, 163–171. [Google Scholar] [CrossRef]
- Wu, T.; Wang, D.; Rison, W.; Thomas, R.J.; Edens, H.E.; Takagi, N.; Krehbiel, P.R. Corona discharges from a windmill and its lightning protection tower in winter thunderstorms. J. Geophys. Res. Atmos. 2017, 122, 4849–4865. [Google Scholar] [CrossRef]
- Miki, M.; Miki, T.; Wada, A.; Asakawa, A.; Asuka, Y.; Honjo, N. Observation of lightning flashes to wind turbines. In Proceedings of the 30th International Conference on Lightning Protection (ICLP2010), Cagliari, Italy, 13–17 September 2010; pp. 1–7. [Google Scholar]
- Wu, Q.; Wang, Y.; Du, Z.; Wu, Z.; Deng, Y.; Wen, X. Positive corona discharge of rod-plate electrodes in high-speed airflow. High Volt. 2024, 10, 337–350. [Google Scholar] [CrossRef]
- Uman, M.A. The Art and Science of Lightning Protection, 1st ed.; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Rakov, V.A.; Uman, M.A. Lightning: Physics and Effects; Cambridge University Press: New York, NY, USA, 2003. [Google Scholar]
- Weidman, C.D.; Krider, E.P. The fine structure of lightning return stroke waveforms. J. Geophys. Res. 1978, 83, 6239–6247. [Google Scholar] [CrossRef]
- Diendorfer, G.; Pichler, H.; Mair, M. Some parameters of negative upward-initiated lightning to the Gaisberg Tower (2000–2007). IEEE Trans. Electromagn. Compat. 2009, 51, 443–452. [Google Scholar] [CrossRef]
- Miki, M.; Miki, T.; Asakawa, A.; Shindo, T.; Yokoyama, S. Characteristics of upward leaders of winter lightning in the coastal area of the sea of Japan. IEEJ Trans. Power Energy 2012, 132, 560–567. [Google Scholar] [CrossRef]
- Shindo, T.; Miki, M.; Asakawa, A. Lightning protection of wind turbines against winter lightning in Japan. In Proceedings of the International Conference on Lightning Protection, Vienna, Austria, 16–20 September 2012; pp. 1–4. [Google Scholar]
- Zhang, M.; Li, Q.; Li, H.; Yu, W.; Guo, Z.; Siew, W.H. Damage Mechanism of Wind Turbine Blade under the Impact of Lightning Induced Arcs. J. Renew. Sustain. Energy 2019, 11, 053306. [Google Scholar] [CrossRef]
- Vasa, N.J. Experimental study on lightning attachment manner considering various types of lightning protection measures on wind turbine blades. In Proceedings of the 28th International Conference on Lightning Protection (ICLP2006), Kanazawa, Japan, 17–21 September 2006; pp. 1483–1487. [Google Scholar]
- Arinaga, S. Experimental Study on Lightning Protection Methods for Wind Turbine Blades. In Proceedings of the 28th International Conference on Lightning Protection (ICLP2006), Kanazawa, Japan, 11–21 September 2006; pp. 1493–1496. [Google Scholar]
- Yokoyama, S. Lightning protection of wind turbine blades. Electr. Power Syst. Res. 2013, 94, 3–9. [Google Scholar] [CrossRef]
- Montanyà, J.; March, V.; Hermoso, B.; Hermoso, J. High-speed videos of laboratory leaders emerging from wind turbine blade tips. In Proceedings of the 30th Lightning Protection (ICLP2010), Cagliari, Italy, 13–17 September 2010; pp. 1–5. [Google Scholar]
- Muto, A.; Suzuki, J.; Ueda, T. Performance comparison of wind turbine blade receptor for lightning protection. In Proceedings of the 30th Lightning Protection (ICLP2010), Cagliari, Italy, 13–17 September 2010; pp. 1–6. [Google Scholar]
- Abd-Elhady, A.M.; Sabiha, N.A.; Izzularab, M.A. Experimental evaluation of air-termination systems for wind turbine blades. Electr. Power Syst. Res. 2014, 107, 133–143. [Google Scholar] [CrossRef]
- Guo, Z.; Li, Q.; Ma, Y.; Ren, H.; Fang, Z.; Chen, C.; Siew, W.H. Experimental study on lightning attachment manner to wind turbine blades with lightning protection system. IEEE Trans. Plasma. Sci. 2019, 47, 635–646. [Google Scholar] [CrossRef]
- Radičević, B.M.; Savić, M.S.; Madsen, S.F.; Badea, I. Impact of wind turbine blade rotation on the lightning strike incidence—A theoretical and experimental study using a reduced-size model. Energy 2012, 45, 644–654. [Google Scholar] [CrossRef]
- Guo, Z.; Li, Q.; Yu, W.; Arif, W.; Siew, W.H. Experimental study on lightning attachment manner to rotation wind turbine blade. In Proceedings of the 34th International Conference on Lightning Protection (ICLP2018), Rzeszow, Poland, 2–7 September 2018; pp. 1–5. [Google Scholar]
- Wen, X.; Deng, Y.; Wang, Y.; Lan, L.; Qu, L.; Wang, J.; Wang, H. Discharge path observation and the statistical characteristics of discharge paths for long–air gap discharge for in-operation wind turbines. Wind Energy 2020, 23, 1351–1366. [Google Scholar] [CrossRef]
- Minowa, M.; Ito, K.; Sumi, S.I.; Horii, K. A study of lightning protection for wind turbine blade by using creeping discharge characteristics. In Proceedings of the 31st Lightning Protection (ICLP2012), Vienna, Austria, 2–7 September 2012; pp. 1–4. [Google Scholar]
- Wu, Q.; Yang, Q. Scaled experiment and observation of the lightning discharge process of rotating wind turbines under different shapes of high-voltage electrodes in the laboratory. Electr. Power Syst. Res. 2024, 231, 110339. [Google Scholar] [CrossRef]
- Wen, X.; Qu, L.; Wang, Y.; Si, T.; Xu, J.; Lan, L. Experimental Study of the Influence of the Blade Rotation on Triggered Lightning Ability of Wind Turbine’s Blades. Proc. CSEE 2017, 37, 2151–2159. (In Chinese) [Google Scholar]
- He, T.; He, H.; Shi, W.; Zhang, Z.; Yin, Y.; Chen, W. Experimental Study on the GFRP Laminate Breakdown of Wind Turbine Blades due to Lightning Strikes by using Long Sparks. In Proceedings of the 2017 International Conference on Lightning and Static Electricity, Nagoya, Japan, 13–15 September 2017; p. 3C3-8. [Google Scholar]
- He, H.; Chen, W.; Luo, B.; Bian, K.; Xiang, N.; Yin, Y.; Zhang, Z.; Dai, M.; He, T. On the electrical breakdown of GFRP wind turbine blades due to direct lightning strokes. Renew Energy 2022, 186, 974–985. [Google Scholar] [CrossRef]
- Jiang, L.; Jiang, Z.; Lu, J.; Hu, D.; Xie, P.; Huang, X. Accumulation characteristics of precipitation static on rotating wind turbine blades and its influence on the lightning attachment characteristics. High Volt. 2024, 9, 1270–1279. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Mu, Z.; Li, Y.; Feng, F. An Experimental Study on Biochar/Polypyrrole Coating for Blade Anti-Icing of Wind Turbines. Coatings 2023, 13, 759. [Google Scholar] [CrossRef]
- Golde, R.H. The Lightning Conductor. J. Frankl. I. 1967, 283, 451–463. [Google Scholar] [CrossRef]
- Eriksson, A.J. An Improved Electrogeometric Model for Transmission Line Shielding Analysis. IEEE Trans. Power Deliv. 1987, 2, 871–886. [Google Scholar] [CrossRef]
- Rizk, F. A model for switching impulse leader inception and breakdown of long air-gaps. IEEE Trans. Power Deliv. 1989, 4, 596–603. [Google Scholar] [CrossRef]
- Goelian, N.; Lalande, P.; Bondiou-Clergerie, A.; Bacchiega, G.L.; Gazzani, A.; Gallimberti, I. A simplified model for the simulation of positive-spark development in long air gaps. J. Phys. D Appl. Phys. 1997, 30, 2441–2452. [Google Scholar] [CrossRef]
- Becerra, M.; Cooray, V. A simplified physical model to determine the lightning upward connecting leader inception. IEEE T Power Deliv. 2006, 21, 897–908. [Google Scholar] [CrossRef]
- Golde, R.H. Lightning Protection; Edward Arnold: London, UK, 1973; pp. 26–30. [Google Scholar]
- Rakov, V.A.; Lutz, A.O. A New Technique for Estimating Equivalent Attractive Radius for Downward Lightning Flashes. In Proceedings of the 20th International Conference on Lightning Protection, Interlaken, Switzerland, 24–28 September 1990; pp. 1–2. [Google Scholar]
- Warner, T.A. Observations of simultaneous upward lightning leaders from multiple tall structures. Atmos. Res. 2012, 117, 45–54. [Google Scholar] [CrossRef]
- Hill, J.D.; Uman, M.A.; Jordan, D.M. High-speed video observations of a lightning stepped leader. J. Geophys. Res. Atmos. 2011, 27, D16. [Google Scholar] [CrossRef]
- Saba, M.M.F.; Paiva, A.R.; Schumann, C.; Ferro, M.A.S.; Naccarato, K.P.; Silva, J.C.O.; Custódio, D.M. Lightning attachment process to common buildings. Geophys. Res. Lett. 2017, 44, 4368–4375. [Google Scholar] [CrossRef]
- Bazelyan, E.M.; Raizer, Y.P.; Aleksandrov, N.L. Corona initiated from grounded objects under thunderstorm conditions and its influence on lightning attachment. Plasma Sources Sci. Technol. 2008, 17, 024015. [Google Scholar] [CrossRef]
- Becerra, M. Glow corona generation and streamer inception at the tip of grounded objects during thunderstorms: Revisited. J. Phys. D Appl. Phys. 2013, 46, 135205. [Google Scholar] [CrossRef]
- Becerra, M. Corona discharges and their effect on lightning attachment revisited: Upward leader initiation and downward leader interception. Atmos. Res. 2014, 149, 316–323. [Google Scholar] [CrossRef]
- Wang, D.; Takagi, N. Characteristics of winter lightning that occurred on a windmill and its lightning protection tower in Japan. IEEJ Trans. Power Energy 2012, 132, 568–572. [Google Scholar] [CrossRef]
- Yu, W.; Li, Q.; Zhao, J.; Li, H.; Siew, W.H. Thundercloud-Induced Spatial Ion Flow in the Neighborhood of Rotating Wind Turbine and Impact Mechanism on Corona Inception. IEEE Trans. Plasma. Sci. 2021, 49, 2925–2935. [Google Scholar] [CrossRef]
Country | Year | Average Unit Capacity (MW) | Faults Per 100 Turbine Years |
---|---|---|---|
Denmark [3] | 1990–1998 | 0.24 | 3.9 |
Japan [4] | 2001–2004 | 1.65 | 6.2 |
US [5] | 2009–2013 | 2.0 | 11.9 |
China [6] | 2012–2017 | ≥1.5 | 9.8 |
No. | Proportion | Size of Observation Cases | Height of WTG | Location of Wind Farm | Reference |
---|---|---|---|---|---|
1 | 94% | 36 | 100 m | Japan | [7,8] |
2 | 43% | 7 | 125 m | United States | [30] |
EGM | LPM | |
---|---|---|
Physical process involved | The initiation of upward leader | The propagation of downward leader, the initiation and development of upward leader, the competition of different upward leader during attachment process |
Variables | Peak value of current, structure of grounded objects | Peak value of current, structure of grounded objects, speed of downward leader, property of leader channel |
The complexity of calculation | Easy (striking distance is define by peak value of current) | Complicated (Involved calculation of electric field) |
Typical method | Rolling sphere method | SLIM |
Application | Widely used for lightning protection design of grounded objects, e.g., transmission line, wind turbine | Mainly used in academic research |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Siew, W.H.; Li, Q.; Shi, W. On the Lightning Attachment Process of Wind Turbine–Observation, Experiments and Modelling. Machines 2025, 13, 704. https://doi.org/10.3390/machines13080704
Guo Z, Siew WH, Li Q, Shi W. On the Lightning Attachment Process of Wind Turbine–Observation, Experiments and Modelling. Machines. 2025; 13(8):704. https://doi.org/10.3390/machines13080704
Chicago/Turabian StyleGuo, Zixin, Wah Hoon Siew, Qingmin Li, and Weidong Shi. 2025. "On the Lightning Attachment Process of Wind Turbine–Observation, Experiments and Modelling" Machines 13, no. 8: 704. https://doi.org/10.3390/machines13080704
APA StyleGuo, Z., Siew, W. H., Li, Q., & Shi, W. (2025). On the Lightning Attachment Process of Wind Turbine–Observation, Experiments and Modelling. Machines, 13(8), 704. https://doi.org/10.3390/machines13080704