Recent Developments in Machine Design, Automation and Robotics
1. Artificial Intelligence and Machine Learning in Automation
2. Robotics and Human–Machine Interaction
3. Smart Manufacturing and Control Systems
4. Electric Machines, Drives, and Mechatronics
5. Green Design, Machining, and Sustainability
Conflicts of Interest
References
- Li, L. Digital transformation and sustainable performance: The moderating role of market turbulence. Ind. Mark. Manag. 2022, 104, 28–37. [Google Scholar] [CrossRef]
- Han, Y.; Li, Z.; Feng, T.; Qiu, S.; Hu, J.; Yadav, K.K.; Obaidullah, A.J. Unraveling the impact of digital transformation on green innovation through microdata and machine learning. J. Environ. Manag. 2024, 354, 120271. [Google Scholar] [CrossRef] [PubMed]
- Turan, E.; Konuşkan, Y.; Yıldırım, N.; Tunçalp, D.; İnan, M.; Yasin, O.; Turan, B.; Kerimoğlu, V. Digital twin modelling for optimizing the material consumption: A case study on sustainability improvement of thermoforming process. Sustain. Comput. Inform. Syst. 2022, 35, 100655. [Google Scholar] [CrossRef]
- Leng, J.; Liu, Q.; Ye, S.; Jing, J.; Wang, Y.; Zhang, C.; Zhang, D.; Chen, X. Digital twin-driven rapid reconfiguration of the automated manufacturing system via an open architecture model. Robot. Comput. Integr. Manuf. 2020, 63, 101895. [Google Scholar] [CrossRef]
- Duro, R.; Kondratenko, Y. Advances in Intelligent Robotics and Collaborative Automation; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Mineo, C.; Vasilev, M.; Cowan, B.; MacLeod, C.; Pierce, S.G.; Wong, C.; Yang, E.; Fuentes, R.; Cross, E. Enabling robotic adaptive behaviour capabilities for new industry 4.0 automated quality inspection paradigms. Insight Non Destr. Test. Cond. Monit. 2020, 62, 338–344. [Google Scholar] [CrossRef]
- George, A.S.; George, A.H. Industrial revolution 5.0: The transformation of the modern manufacturing process to enable man and machine to work hand in hand. J. Seybold Rep. ISSN NO 2020, 1533, 1525.68128. [Google Scholar]
- Ren, L.; Dong, J.; Liu, S.; Zhang, L.; Wang, L. Embodied intelligence toward future smart manufacturing in the era of AI foundation model. IEEE/ASME Trans. Mechatron. 2024, 1–11, early access. [Google Scholar] [CrossRef]
- Czimmermann, T.; Chiurazzi, M.; Milazzo, M.; Roccella, S.; Barbieri, M.; Dario, P.; Oddo, C.M.; Ciuti, G. An autonomous robotic platform for manipulation and inspection of metallic surfaces in industry 4.0. IEEE Trans. Autom. Sci. 2021, 19, 1691–1706. [Google Scholar] [CrossRef]
- Leng, J.; Ruan, G.; Xu, C.; Zhou, X.; Xu, K.; Qiao, Y.; Liu, Z.; Liu, Q. Deep reinforcement learning of graph convolutional neural network for resilient production control of mass individualized prototyping toward industry 5.0. IEEE Trans. Syst. Man Cybern. Syst. 2024, 54, 7092–7105. [Google Scholar] [CrossRef]
- Zhai, J.; Chen, X.; Sun, X.; Xie, H. Economically and thermodynamically efficient pressure-swing distillation with heat integration and heat pump techniques. Appl. Therm. Eng. 2023, 218, 119389. [Google Scholar] [CrossRef]
- Lazarenko, B. Manufacturing evolution: The intelligent automation revolution. Quality 2025, 64, 43. [Google Scholar]
- Ghulaxe, V. Robotic process automation with ML and artificial intelligence: Revolutionizing business processes. Int. J. Eng. Technol. Manag. Sci. 2024, 4, 107–112. [Google Scholar]
- Li, L.; Liu, J.; Wei, S.; Chen, G.; Blasch, E.; Pham, K. Smart robot-enabled remaining useful life prediction and maintenance optimization for complex structures using artificial intelligence and machine learning. In Proceedings of the Sensors and Systems for Space Applications XIV, Online, 12–16 April 2021; pp. 100–108. [Google Scholar]
- Zhang, Y.; Cai, B.; Gao, C.; Zhao, Y.; Shao, X.; Yang, C. A system-centred predictive maintenance re-optimization method based on multi-agent deep reinforcement learning. Expert Syst. Appl. 2025, 274, 127034. [Google Scholar] [CrossRef]
- Tsochev, G.; Sharabov, M. Artificial intelligence methods used in industry 4.0 in particular industrial control systems. AIP Conf. Proc. 2021, 2333, 070017. [Google Scholar] [CrossRef]
- Yang, T.; Yi, X.; Lu, S.; Johansson, K.H.; Chai, T. Intelligent manufacturing for the process industry driven by industrial artificial intelligence. Engineering 2021, 7, 1224–1230. [Google Scholar] [CrossRef]
- Fabiocchi, D.; Giulietti, N.; Carnevale, M.; Giberti, H. AI-driven virtual sensors for real-time dynamic analysis of mechanisms: A feasibility study. Machines 2024, 12, 257. [Google Scholar] [CrossRef]
- Haque, M.E.; Zabin, M.; Uddin, J. EnsembleXAI-Motor: A lightweight framework for fault classification in electric vehicle drive motors using feature selection, ensemble learning, and explainable AI. Machines 2025, 13, 314. [Google Scholar] [CrossRef]
- Al-refai, G.; Karasneh, D.; Elmoaqet, H.; Ryalat, M.; Almtireen, N. Surface classification from robot internal measurement unit time-series data using cascaded and parallel deep learning fusion models. Machines 2025, 13, 251. [Google Scholar] [CrossRef]
- Bougoffa, M.; Benmoussa, S.; Djeziri, M.; Palais, O. Hybrid deep learning for fault diagnosis in photovoltaic systems. Machines 2025, 13, 378. [Google Scholar] [CrossRef]
- Silaa, M.Y.; Barambones, O.; Bencherif, A.; Rougab, I. An adaptive control strategy with switching gain and forgetting factor for a robotic arm manipulator. Machines 2025, 13, 424. [Google Scholar] [CrossRef]
- Lisauskas, B.; Maskeliunas, R. Efficient transformer-based road scene segmentation approach with attention-guided decoding for memory-constrained systems. Machines 2025, 13, 466. [Google Scholar] [CrossRef]
- Osan, A.R.; Drenţa, R.F. Application of artificial neural networks in predicting surface quality and machining time. Machines 2025, 13, 561. [Google Scholar] [CrossRef]
- Ochoa, P.; Peraza, C.; Melin, P.; Castillo, O.; Geem, Z.W. Type-3 fuzzy dynamic adaptation of the crossover parameter in differential evolution for the optimal design of type-3 fuzzy controllers for the inverted pendulum. Machines 2025, 13, 450. [Google Scholar] [CrossRef]
- Olszewski, M. Modern industrial robotics. Pomiary Autom. Robot. 2020, 24, 5–20. [Google Scholar] [CrossRef]
- Elwin, M.L.; Strong, B.; Freeman, R.A.; Lynch, K.M. Human-multirobot collaborative mobile manipulation: The omnid mocobots. IEEE Robot. Autom. Lett. 2022, 8, 376–383. [Google Scholar] [CrossRef]
- Liang, H.; Zheng, H.; Lu, Y. Context-aware cognitive assistive assembly system based on online human action recognition. In Proceedings of the 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE), Bari, Italy, 28 August–1 September 2024; pp. 381–387. [Google Scholar]
- Jin, L.; Qi, Y.; Luo, X.; Li, S.; Shang, M. Distributed competition of multi-robot coordination under variable and switching topologies. IEEE Trans. Autom. Sci. 2021, 19, 3575–3586. [Google Scholar] [CrossRef]
- Hu, K.; Zou, L.; Chen, Z.; Jiang, J.; Jiang, F.; Tao, X. Wireless multi-robot collaboration: Communications, perception, control and planning. IEEE Netw. 2024, 39, 302–311. [Google Scholar] [CrossRef]
- Mitterberger, D.; Dörfler, K.; Sandy, T.; Salveridou, F.; Hutter, M.; Gramazio, F.; Kohler, M. Augmented bricklaying: Human–machine interaction for in situ assembly of complex brickwork using object-aware augmented reality. Constr. Robot. 2020, 4, 151–161. [Google Scholar] [CrossRef]
- Jokinen, K.; Homma, K.; Matsumoto, Y.; Fukuda, K. Integration and interaction of trustworthy ai in a virtual coach–an overview of EU-Japan collaboration on eldercare. In Proceedings of the Annual Conference of the Japanese Society for Artificial Intelligence, Online, 8–11 June 2021; pp. 190–200. [Google Scholar]
- Subramanian, K.; Thomas, L.; Sahin, M.; Sahin, F. Supporting human–robot interaction in manufacturing with augmented reality and effective human–computer interaction: A review and framework. Machines 2024, 12, 706. [Google Scholar] [CrossRef]
- Pham, H.V.; Do, H.Q.; Nguyen Quang, M.; Asadi, F.; Moore, P. Proposed multi-ST model for collaborating multiple robots in dynamic environments. Machines 2024, 12, 797. [Google Scholar] [CrossRef]
- Voutsakelis, G.; Dimkaros, I.; Tzimos, N.; Kokkonis, G.; Kontogiannis, S. Development and evaluation of a tool for blind users utilizing AI object detection and haptic feedback. Machines 2025, 13, 398. [Google Scholar] [CrossRef]
- Pan, J.; Cheng, Y.; Hu, C.; Jiang, M.; Ma, Y.; Meng, F.; Shi, Q. The innovative design and performance testing of a mobile robot for the automated installation of spacers on six-split transmission lines. Machines 2025, 13, 432. [Google Scholar] [CrossRef]
- Florescu, A. Digital twin for flexible manufacturing systems and optimization through simulation: A case study. Machines 2024, 12, 785. [Google Scholar] [CrossRef]
- Tissot-Daguette, L.; Vallat, C.; Nijenhuis, M.; Cosandier, F.; Henein, S. Near-zero parasitic shift rectilinear flexure stages based on coupled n-RRR planar parallel mechanisms. Machines 2025, 13, 530. [Google Scholar] [CrossRef]
- Foiani, F.; Morettini, G.; Palmieri, M.; Carletta, S.; Cianetti, F.; Dionigi, M. Multibody simulation of 1U CubeSat passive attitude stabilisation using a robotic arm. Machines 2025, 13, 509. [Google Scholar] [CrossRef]
- Simmons, N. Design of robust manufacturing systems: A systemic approach. Am. J. Ind. Prod. Eng. 2025, 6, 10–14. [Google Scholar]
- Banerjee, S.; Jesubalan, N.G.; Kulkarni, A.; Agarwal, A.; Rathore, A.S. Developing cyber-physical system and digital twin for smart manufacturing: Methodology and case study of continuous clarification. J. Ind. Inf. Integr. 2024, 38, 100577. [Google Scholar] [CrossRef]
- Rossi, A.; Moretti, M.; Fravolini, M.; Senin, N. Autonomous learning of digital twins for intelligent extrusion optimisation in MEX. J. Manuf. Process. 2025, 143, 321–334. [Google Scholar] [CrossRef]
- Lu, Y.; Asghar, M.R. Semantic communications between distributed cyber-physical systems towards collaborative automation for smart manufacturing. J. Manuf. Syst. 2020, 55, 348–359. [Google Scholar] [CrossRef]
- Musaeva, K.; Vyachina, I.; Aliyeva, M. Smart factories and their impact on modern manufacturing enterprises: Prospects and challenges in the era of the digital economy. In Proceedings of the E3S Web of Conferences, Les Mureaux, France, 21–22 November 2024; p. 07010. [Google Scholar]
- Jia, L.; Pei, Y. Recent advances in multi-agent reinforcement learning for intelligent automation and control of water environment systems. Machines 2025, 13, 503. [Google Scholar] [CrossRef]
- Tzimas, E.; Papazetis, G.; Benardos, P.; Vosniakos, G.-C. Design and development of a flexible manufacturing cell controller using an open-source communication protocol for interoperability. Machines 2024, 12, 519. [Google Scholar] [CrossRef]
- Curralo, P.M.P.; Campilho, R.D.S.G.; Pereira, J.A.P.; Silva, F.J.G. Design of connector assembly equipment for the automotive industry. Machines 2024, 12, 731. [Google Scholar] [CrossRef]
- Rashed, A.; Abdulazeem, Y.; Farrag, T.A.; Bamaqa, A.; Almaliki, M.; Badawy, M.; Elhosseini, M.A. Toward inclusive smart cities: Sound-based vehicle diagnostics, emergency signal recognition, and beyond. Machines 2025, 13, 258. [Google Scholar] [CrossRef]
- Paduraru, C.; Cernat, M.; Staicu, A.-N. A unified framework for automated testing of robotic process automation workflows using symbolic and concolic analysis. Machines 2025, 13, 504. [Google Scholar] [CrossRef]
- Puri, D.; Vita, L.; Gattamelata, D.; Tulliani, V. Roll/tip-over risk analysis of agricultural self-propelled machines using airborne LiDAR data: GIS-based approach. Machines 2025, 13, 377. [Google Scholar] [CrossRef]
- Klein Fiorentin, F.; Dantas, R.; Wolfs Gil, J.; Piga Carboni, A.; Fiorentin, T.A.; de Jesus, A.M.P. On the specimen design, physical properties and geometry effect on heat generation and thermal gradient in ultrasonic fatigue. Machines 2025, 13, 380. [Google Scholar] [CrossRef]
- Berezin, L.; Oliinyk, O.; Rubanka, M. Innovative trends in industrial machinery engineering and education. Actual Probl. Mod. Sci. 2021. [Google Scholar]
- Luo, Y.; Wu, K.; Spielberg, A.; Foshey, M.; Rus, D.; Palacios, T.; Matusik, W. Digital fabrication of pneumatic actuators with integrated sensing by machine knitting. In Proceedings of the Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 30 April–5 May 2022; pp. 1–13. [Google Scholar]
- Chen, X. Application of intelligent control in mechatronics system. Eng. Adv. 2023, 3, 182–185. [Google Scholar] [CrossRef]
- Oomen, T.; Steinbuch, M. Model-based control for high-tech mechatronic systems. In Proceedings of the Mechatronics and Robotics; CRC Press: Boca Raton, FL, USA, 2020; pp. 51–80. [Google Scholar]
- Hammood, A.S. Towards condition monitoring: Fabrication and finite element analysis of a helical gear transmission rig for fault simulation. Jordan J. Mech. Ind. Eng. 2024, 18, 219–226. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Z.; Xiong, J.; Chen, X. Accuracy analysis of complex transmission system with distributed tooth profile errors. Machines 2024, 12, 459. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, B.; Duan, M.; Gu, R.; Liang, S.; Chen, Y. Design and experimental research of a non-destructive detection device for high-precision cylindrical roller dynamic unbalance. Machines 2024, 12, 684. [Google Scholar] [CrossRef]
- Ahmed, S.; Ali, Q.; Sirewal, G.J.; Kumar, K.; Choi, G. Hybrid brushless wound-rotor synchronous machine with dual-mode operation for washing machine applications. Machines 2025, 13, 342. [Google Scholar] [CrossRef]
- Vlachou, V.I.; Karakatsanis, T.S. Development of a fault-tolerant permanent magnet synchronous motor using a machine-learning algorithm for a predictive maintenance elevator. Machines 2025, 13, 427. [Google Scholar] [CrossRef]
- Kim, T.-S.; Yang, J.-W.; Shin, K.-H.; Jang, G.-H.; Han, C.; Choi, J.-Y. Analysis of electromagnetic characteristics of outer rotor type BLDC motor based on analytical method and optimal design using NSGA-II. Machines 2025, 13, 440. [Google Scholar] [CrossRef]
- Yakovenko, I.; Permyakov, A.; Dobrotvorskiy, S.; Basova, Y.; Kotliar, A.; Zinchenko, A. Prospects for the development of process equipment in aggregate-modular design for sustainable mechanical engineering. Int. J. Mechatron. Appl. Mech. 2023, 13, 145–156. [Google Scholar]
- Goodfellow, H.D.; Wang, Y. Industrial Ventilation Design Guidebook: Volume 2: Engineering Design and Applications; Academic press: Cambridge, MA, USA, 2021. [Google Scholar]
- Khanna, N.; Shah, P.; Sarikaya, M.; Pusavec, F. Energy consumption and ecological analysis of sustainable and conventional cutting fluid strategies in machining 15–5 PHSS. Sustain. Mater. Technol. 2022, 32, e00416. [Google Scholar] [CrossRef]
- Babu, M.N.; Anandan, V.; Babu, M.D. Performance of ionic liquid as a lubricant in turning inconel 825 via minimum quantity lubrication method. J. Manuf. Process. 2021, 64, 793–804. [Google Scholar] [CrossRef]
- Hagedorn, W.; Jäger, S.; Wieczorek, L.; Kronenberg, P.; Greiff, K.; Weber, S.; Röttger, A. More than recycling–The potential of the circular economy shown by a case study of the metal working industry. J. Clean. Prod. 2022, 377, 134439. [Google Scholar] [CrossRef]
- Kokkinis, A.; Frantzis, T.; Skordis, K.; Nikolakopoulos, G.; Koustoumpardis, P. Review of automated operations in drilling and mining. Machines 2024, 12, 845. [Google Scholar] [CrossRef]
- Buldum, B.B.; Leksycki, K.; Cagan, S.C. Comparative analysis of dry, minimum quantity lubrication, and nano-reinforced minimum quantity lubrication environments on the machining performance of AZ91D magnesium alloy. Machines 2025, 13, 430. [Google Scholar] [CrossRef]
- Maurya, S.K.; Campatelli, G.; Veracini, M.; Arcioni, M.; Clori, D. Balancing productivity and sustainability in EDM: A comprehensive analysis of energy consumption and electrode degradation. Machines 2025, 13, 469. [Google Scholar] [CrossRef]
- Ramírez-Jiménez, D.F.; Torres Valencia, C.A. Experimental design and simulation of a fly-cutting plant for academic environment practices. Machines 2025, 13, 15. [Google Scholar] [CrossRef]
- Raman, V.V.; Badarinath, R.; Prabhu, V.V. TOPSIS-based methodology for selecting fused filament fabrication machines. Machines 2025, 13, 574. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campilho, R.D.S.G. Recent Developments in Machine Design, Automation and Robotics. Machines 2025, 13, 683. https://doi.org/10.3390/machines13080683
Campilho RDSG. Recent Developments in Machine Design, Automation and Robotics. Machines. 2025; 13(8):683. https://doi.org/10.3390/machines13080683
Chicago/Turabian StyleCampilho, Raul D. S. G. 2025. "Recent Developments in Machine Design, Automation and Robotics" Machines 13, no. 8: 683. https://doi.org/10.3390/machines13080683
APA StyleCampilho, R. D. S. G. (2025). Recent Developments in Machine Design, Automation and Robotics. Machines, 13(8), 683. https://doi.org/10.3390/machines13080683