Hybrid Deep Learning for Fault Diagnosis in Photovoltaic Systems
Abstract
1. Introduction
- A comparative analysis of DL models under dynamic stresses (e.g., fluctuating irradiance, partial shading).
- A hybrid SSAE-OMLP framework optimized for computational efficiency, enabling rapid fault detection under dynamic environmental conditions.
- Empirical validation of scalability for large-scale deployments, addressing a critical gap in prior research [38].
2. Photovoltaic Fault Types
2.1. Arc Faults
2.2. Open-Circuit Faults
2.3. Short-Circuit Faults
2.4. Ground Faults
2.5. Line-to-Line Faults
2.6. Module/Cell Mismatch
2.7. Partial Shading
2.8. Degradation
3. Materials and Methods
3.1. PV System
3.2. Dataset Description
- Vdc1, Vdc2: Voltage for each string.
- Idc1, Idc2: Current for each string.
- Irr: Irradiance.
- pvt: PV Module Temperature.
- fnv: Fault label.
3.3. Data Preprocessing
3.4. Stacked Sparse Auto-Encoder for Fault Extraction
- Architecture: Each auto-encoder in the SAE comprises an encoder, a hidden layer (bottleneck), and a decoder. The encoder transforms the normalized data into a compressed representation in the bottleneck layer, where critical patterns relevant to fault types are retained. This architecture allows the SSAE to automatically learn and preserve the most informative features for fault detection [48].
- Encoding and decoding: The encoder maps the input vector Xi = [Vdc1, Vdc2, Idc1, Idc2, Irr, pvt] to a hidden representation hi to predict output ], as determined by (2) and (3):
- -
- Input Transformation (Encoding Layer)
- Decoding Layer:The latent representation hi is then reconstructed into via the decoding function which applies another linear transformation (using weights W1 and bias b1) and passes the result through a sigmoid activation, as shown in Equation (3).
- -
- Cost Function:
3.5. Multi-Layer Perceptron for Fault Classification
3.6. Hybrid SSAE with Optimized-MLP Based Models
Algorithm 1. Hybrid SSAE and Optimized-MLP |
1: Procedure Hybrid Stacked Sparse AutoEncoder and Optimized-Multilayer Perceptron |
2: //Preprocessing |
3: Input X: unlabeled raw data > (Vdc1, Vdc2, Idc1, Idc2, Irr, pvt) |
4: Normalize X to [0, 1] |
5: //Train Stacked Sparse Autoencoder (SSAE) |
6: Initialize encoder and decoder with weights |
7: //Train SSAE for 100 epochs |
8: for epoch = 1 to 100 do |
9: //Forward pass |
10: Latent representation: |
11: |
12: Reconstruction: |
13: |
14: //Compute loss |
15: Reconstruction error: |
16: |
17: Sparsity penalty (KL divergence): |
18: |
19: Weight decay: |
20: |
21: Total loss: |
22: |
23: //Backpropagation |
24: Update via Adam: |
25: |
26: End for |
27: //Feature Extraction |
28: Extract latent features: |
29: |
30://Optimized-MLP for Fault Classification |
31://Optimized-MLP for Fault Classification |
32: Hidden layers Units/layer , Dropout |
33: Initialize MLP with weights |
34: Initialize Bayesian optimizer. |
35: for do |
36: Sample hyperparameters |
37: for epoch = 1 to 100 do //Train MLP for 100 epochs |
38://Forward pass |
39: Prediction: |
40: |
41://Compute loss |
42: Cross-entropy (classification) or MSE (regression): |
43: |
44://Backpropagation |
45: Update via Adam: |
46: |
47: Select optimal |
48: End For |
49: return |
50: End procedure |
3.7. Evaluation Metrics
- TP (True Positive): This occurs when the detection process correctly identifies an authentic fault in the PV system.
- TN (True Negative): This is observed when the PV system operates without any issues, and the fault detection system correctly verifies the absence of faults.
- FP (False Positive): This occurs when the PV system shows no faults, and the fault detection system identifies a fault.
- FN (False Negative): This happens when the PV system experiences a fault, and the detection system does not indicate it.
- Accuracy: Correlates with the comprehensive detection effectiveness, Equation (18):
- Precision: Represents the ratio between positive indicators, Equation (19):
- Sensitivity: Assesses the effectiveness of accurately classifying detections, Equation (20):
- Specificity (recall): Assesses the classifier’s efficiency in recognizing inaccurate detections, Equation (21):
- Macro F1-Score: Harmonic mean of precision and recall, averaged equally across all classes, Equation (22):
- Micro F1-Score: Global harmonic mean of overall precision and recall, accounting for class imbalance, Equation (23):
- Cohen’s Kappa (κ): Measures inter-rater agreement adjusted for chance, Equation (24).
4. Results
4.1. SSAE Performance
4.2. Optimized-MLP Performance
4.3. Confusion Matrix
4.4. Comparative Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maka, A.O.M.; Alabid, J.M. Solar energy technology and its roles in sustainable development. Clean Energy 2022, 6, 476–483. [Google Scholar] [CrossRef]
- Alami, A.H.; Alasad, S.; Aljaghoub, H.; Ayoub, M.; Alashkar, A.; Mdallal, A.; Hasan, R. First-Generation Photovoltaics: History and Conventional Manufacturing. In Advances in Science, Technology & Innovation; Springer International Publishing: Berlin/Heidelberg, Germany, 2023; pp. 7–19. [Google Scholar] [CrossRef]
- Bougoffa, M.; Benmoussa, S.; Djeziri, M.; Contaret, T. Deep Learning-Based Fault Diagnosis in Photovoltaic System. In Proceedings of the 2024 International Conference on Decision Aid Sciences and Applications (DASA), Manama, Bahrain, 11–12 December 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Mansouri, M.; Trabelsi, M.; Nounou, H.; Nounou, M. Deep Learning-Based Fault Diagnosis of Photovoltaic Systems: A Comprehensive Review and Enhancement Prospects. IEEE Access 2021, 9, 126286–126306. [Google Scholar] [CrossRef]
- Abubakar, A.; Almeida, C.F.M.; Gemignani, M. Review of Artificial Intelligence-Based Failure Detection and Diagnosis Methods for Solar Photovoltaic Systems. Machines 2021, 9, 328. [Google Scholar] [CrossRef]
- Venkatakrishnan, G.R.; Rengaraj, R.; Tamilselvi, S.; Harshini, J.; Sahoo, A.; Saleel, C.A.; Abbas, M.; Cuce, E.; Jazlyn, C.; Shaik, S.; et al. Detection, location, and diagnosis of different faults in large solar PV system—A review. Int. J. Low-Carbon Technol. 2023, 18, 659–674. [Google Scholar] [CrossRef]
- Firth, S.K.; Lomas, K.J.; Rees, S.J. A simple model of PV system performance and its use in fault detection. Sol. Energy 2021, 84, 624–635. [Google Scholar] [CrossRef]
- Rico Espinosa, A.; Bressan, M.; Giraldo, L.F. Failure signature classification in solar photovoltaic plants using RGB images and convolutional neural networks. Renew. Energy 2020, 162, 249–256. [Google Scholar] [CrossRef]
- Sarikh, S.; Raoufi, M.; Bennouna, A.; Ikken, B. Characteristic curve diagnosis based on fuzzy classification for a reliable photovoltaic fault monitoring. Sustain. Energy Technol. Assess. 2021, 43, 100958. [Google Scholar] [CrossRef]
- Dida, M.; Boughali, S.; Bechki, D.; Bouguettaia, H. Output power loss of crystalline silicon photovoltaic modules due to dust accumulation in Saharan environment. Renew. Sustain. Energy Rev. 2020, 124, 109787. [Google Scholar] [CrossRef]
- Juaidi, A.; Muhammad, H.H.; Abdallah, R.; Abdalhaq, R.; Albatayneh, A.; Kawa, F. Experimental validation of dust impact on-grid connected PV system performance in Palestine: An energy nexus perspective. Energy Nexus 2022, 6, 100082. [Google Scholar] [CrossRef]
- Osmani, K.; Haddad, A.; Jaber, H.; Lemenand, T.; Castanier, B.; Ramadan, M. Mitigating the effects of partial shading on PV system’s performance through PV array reconfiguration: A review. Therm. Sci. Eng. Prog. 2022, 31, 101280. [Google Scholar] [CrossRef]
- Osmani, K.; Ramadan, M.; Lemenand, T.; Castanier, B.; Haddad, A. Optimization of PV array tilt angle for minimum levelized cost of energy. Comput. Electr. Eng. 2021, 96, 107474. [Google Scholar] [CrossRef]
- Sepúlveda-Oviedo, E.H.; Travé-Massuyès, L.; Subias, A.; Pavlov, M.; Alonso, C. Fault diagnosis of photovoltaic systems using artificial intelligence: A bibliometric approach. Heliyon 2023, 9, e21491. [Google Scholar] [CrossRef] [PubMed]
- Lodhi, E.; Wang, F.-Y.; Xiong, G.; Zhu, L.; Tamir, T.S.; Rehman, W.U.; Khan, M.A. A Novel Deep Stack-Based Ensemble Learning Approach for Fault Detection and Classification in Photovoltaic Arrays. Remote Sens. 2023, 15, 1277. [Google Scholar] [CrossRef]
- Yuan, Z.; Xiong, G.; Fu, X. Artificial Neural Network for Fault Diagnosis of Solar Photovoltaic Systems: A Survey. Energies 2022, 15, 8693. [Google Scholar] [CrossRef]
- Wang, J.; Gao, D.; Zhu, S.; Wang, S.; Liu, H. Fault diagnosis method of photovoltaic array based on support vector machine. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 45, 5380–5395. [Google Scholar] [CrossRef]
- Bendary, A.F.; Abdelaziz, A.Y.; Ismail, M.M.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Proposed ANFIS Based Approach for Fault Tracking, Detection, Clearing and Rearrangement for Photovoltaic System. Sensors 2021, 21, 2269. [Google Scholar] [CrossRef]
- Amiri, A.F.; Oudira, H.; Chouder, A.; Kichou, S. Faults detection and diagnosis of PV systems based on machine learning approach using random forest classifier. Energy Convers. Manag. 2024, 301, 118076. [Google Scholar] [CrossRef]
- Ghoneim, S.S.; Rashed, A.E.; Elkalashy, N.I. Fault Detection Algorithms for Achieving Service Continuity in Photovoltaic Farms. Intell. Autom. Soft Comput. 2021, 29, 467–479. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, L.; Cheng, S.; Lin, P.; Wu, Y.; Lin, W. Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics. Appl. Energy 2017, 204, 912–931. [Google Scholar] [CrossRef]
- Kara Mostefa Khelil, C.; Amrouche, B.; Kara, K.; Chouder, A. The impact of the ANN’s choice on PV systems diagnosis quality. Energy Convers. Manag. 2021, 240, 114278. [Google Scholar] [CrossRef]
- Masita, K.; Hasan, A.; Shongwe, T.; Hilal, H.A. Deep learning in defects detection of PV modules: A review. Sol. Energy Adv. 2025, 5, 100090. [Google Scholar] [CrossRef]
- Neupane, D.; Bouadjenek, M.R.; Dazeley, R.; Aryal, S. Data-driven machinery fault diagnosis: A comprehensive review. Neurocomputing 2025, 627, 129588. [Google Scholar] [CrossRef]
- Gao, W.; Wai, R.-J. A Novel Fault Identification Method for Photovoltaic Array via Convolutional Neural Network and Residual Gated Recurrent Unit. IEEE Access 2020, 8, 159493–159510. [Google Scholar] [CrossRef]
- Bougoffa, M.; Benmoussa, S.; Djeziri, M.; Contaret, T. Stacked AutoEncoder based diagnosis applied on a Solar Photovoltaic System. IFAC-PapersOnLine 2024, 58, 384–389. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, K.; Zhang, J.; Li, Y.; Yang, Z.; Zheng, W.; Chen, X. Fault diagnosis approach for photovoltaic array based on the stacked auto-encoder and clustering with I–V curves. Energy Convers. Manag. 2021, 245, 114603. [Google Scholar] [CrossRef]
- Eldeghady, G.S.; Kamal, H.A.; Hassan, M.A.M. Fault diagnosis for PV system using a deep learning optimized via PSO heuristic combination technique. Electr. Eng. 2023, 105, 2287–2301. [Google Scholar] [CrossRef]
- Appiah, A.Y.; Zhang, X.; Ayawli, B.B.K.; Kyeremeh, F. Long Short-Term Memory Networks Based Automatic Feature Extraction for Photovoltaic Array Fault Diagnosis. IEEE Access 2019, 7, 30089–30101. [Google Scholar] [CrossRef]
- Qian, J.; Song, Z.; Yao, Y.; Zhu, Z.; Zhang, X. A review on autoencoder based representation learning for fault detection and diagnosis in industrial processes. Chemom. Intell. Lab. Syst. 2022, 231, 104711. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, B.; Luo, W.; Chen, F. Autoencoder-based representation learning and its application in intelligent fault diagnosis: A review. Measurement 2022, 189, 110460. [Google Scholar] [CrossRef]
- Arifeen, M.; Petrovski, A.; Hasan, M.J.; Noman, K.; Navid, W.U.; Haruna, A. Graph-Variational Convolutional Autoencoder-Based Fault Detection and Diagnosis for Photovoltaic Arrays. Machines 2024, 12, 894. [Google Scholar] [CrossRef]
- Guo, Z.; Zhuang, Z.; Tan, H.; Liu, Z.; Li, P.; Lin, Z.; Shang, W.-L.; Zhang, H.; Yan, J. Accurate and generalizable photovoltaic panel segmentation using deep learning for imbalanced datasets. Renew. Energy 2023, 219, 119471. [Google Scholar] [CrossRef]
- Choudhary, T.; Mishra, V.; Goswami, A.; Sarangapani, J. A comprehensive survey on model compression and acceleration. Artif. Intell. Rev. 2020, 53, 5113–5155. [Google Scholar] [CrossRef]
- Vieira, R.G.; Dhimish, M.; de Araújo, F.M.U.; da Silva Guerra, M.I. Comparing multilayer perceptron and probabilistic neural network for PV systems fault detection. Expert Syst. Appl. 2022, 201, 117248. [Google Scholar] [CrossRef]
- Amiri, A.F.; Kichou, S.; Oudira, H.; Chouder, A.; Silvestre, S. Fault detection and diagnosis of a photovoltaic system based on deep learning using the combination of a convolutional neural network (CNN) and bidirectional gated recurrent unit (BI-GRU). Sustainability 2024, 16, 1012. [Google Scholar] [CrossRef]
- Mouaad, B.; Samir, B.; Mohand, D. Dynamic Modeling for Fault Diagnosis in PV Systems Utilizing AI Techniques Based on Multilayer Perceptron (MLP). In Proceedings of the 2024 ASU In-ternational Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS), Manama, Bahrain, 28–29 January 2024; pp. 1032–1036. [Google Scholar] [CrossRef]
- Heidari, A.A.; Faris, H.; Mirjalili, S.; Aljarah, I.; Mafarja, M. Ant Lion Optimizer: Theory, literature review, and application in multi-layer perceptron neural networks. In Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2019; pp. 23–46. [Google Scholar] [CrossRef]
- Madeti, S.R.; Singh, S.N. A comprehensive study on different types of faults and detection techniques for solar photovoltaic system. Sol. Energy 2017, 158, 161–185. [Google Scholar] [CrossRef]
- Alam, M.K.; Khan, F.; Johnson, J.; Flicker, J. A Comprehensive Review of Catastrophic Faults in PV Arrays: Types, Detection, and Mitigation Techniques. IEEE J. Photovolt. 2015, 5, 982–997. [Google Scholar] [CrossRef]
- Nadeem, A.; Sher, H.A.; Murtaza, A.F.; Ahmed, N. Online current-sensorless estimator for PV open circuit voltage and short circuit current. Sol. Energy 2021, 213, 198–210. [Google Scholar] [CrossRef]
- Liu, H.; Mitolo, M.; Qiu, J. Ground-Fault Loop Impedance Calculations in Low-Voltage Single-Phase Systems. IEEE Trans. Ind. Appl. 2024, 50, 1331–1337. [Google Scholar] [CrossRef]
- Eskandari, A.; Milimonfared, J.; Aghaei, M.; Reinders, A.H.M.E. Autonomous Monitoring of Line-to-Line Faults in Photovoltaic Systems by Feature Selection and Parameter Optimization of Support Vector Machine Using Genetic Algorithms. Appl. Sci. 2020, 10, 5527. [Google Scholar] [CrossRef]
- Triki-Lahiani, A.; Bennani-Ben Abdelghani, A.; Slama-Belkhodja, I. Fault detection and monitoring systems for photovoltaic installations: A review. Renew. Sustain. Energy Rev. 2018, 82, 2680–2692. [Google Scholar] [CrossRef]
- Lazzaretti, A.E.; Costa, C.H.D.; Rodrigues, M.P.; Yamada, G.D.; Lexinoski, G.; Moritz, G.L.; Oroski, E.; Goes, R.E.D.; Linhares, R.R.; Stadzisz, P.C.; et al. A Monitoring System for Online Fault Detection and Classification in Photovoltaic Plants. Sensors 2020, 20, 4688. [Google Scholar] [CrossRef] [PubMed]
- Akanbi, O.A.; Amiri, I.S.; Fazeldehkordi, E. Feature Extraction. In A Machine-Learning Approach to Phishing Detection and Defense; Elsevier: Amsterdam, The Netherlands, 2015; pp. 45–54. [Google Scholar] [CrossRef]
- Sarhan, M.; Layeghy, S.; Moustafa, N.; Gallagher, M.; Portmann, M. Feature extraction for machine learning-based intrusion detection in IoT networks. Digit. Commun. Netw. 2024, 10, 205–216. [Google Scholar] [CrossRef]
- Seghiour, A.; Abbas, H.A.; Chouder, A.; Rabhi, A. Deep learning method based on autoencoder neural network applied to faults detection and diagnosis of photovoltaic system. Simul. Model. Pract. Theory 2023, 123, 102704. [Google Scholar] [CrossRef]
- Ng, A. Sparse Autoencoder. In CS294A Lecture Notes; Stanford University: Stanford, CA, USA, 2011; Volume 72, pp. 1–19. [Google Scholar]
- Wu, J.; Chen, X.Y.; Zhang, H.; Xiong, L.D.; Lei, H.; Deng, S.H. Hyperparameter optimization for machine learning models based on Bayesian optimization. J. Electron. Sci. Technol. 2019, 17, 26–40. [Google Scholar] [CrossRef]
- van Engelen, J.E.; Hoos, H.H. A survey on semi-supervised learning. Mach. Learn. 2019, 109, 373–440. [Google Scholar] [CrossRef]
- Colliot, O. (Ed.) Machine Learning for Brain Disorders. In Neuromethods; Springer: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
Proportion of Data | ||
---|---|---|
Label | Class | Samples |
0 | Normal Operation | 309,253 |
1 | Short Circuit | 5999 |
2 | Open Circuit | 6024 |
3 | Degradation | 10,371 |
4 | Shadowing | 184,311 |
Test 1 | Test 2 | Test 3 | |
---|---|---|---|
Precision | 0.996 | 0.998 | 0.998 |
Sensitivity | 0.994 | 0.995 | 0.995 |
Specificity | 1.000 | 1.000 | 1.000 |
Macro f1-score | 0.973 | 0.975 | 0.978 |
Micro f1-score | 0.996 | 0.997 | 0.998 |
Cohen’s Kappa | 0.984 | 0.986 | 0.988 |
Accuracy | 0.996 | 0.997 | 0.9982 |
Classifier | Faults | Accuracy |
---|---|---|
SAE and clustering | OC, SC, PS, and degradation | 97% |
CNN | OC, SC, PS, and degradation | 95.20% |
CNN Bi-GRU | OC, SC, PS, and degradation | 99.4% |
Our method | OC, SC, PS, and degradation | 99.82% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bougoffa, M.; Benmoussa, S.; Djeziri, M.; Palais, O. Hybrid Deep Learning for Fault Diagnosis in Photovoltaic Systems. Machines 2025, 13, 378. https://doi.org/10.3390/machines13050378
Bougoffa M, Benmoussa S, Djeziri M, Palais O. Hybrid Deep Learning for Fault Diagnosis in Photovoltaic Systems. Machines. 2025; 13(5):378. https://doi.org/10.3390/machines13050378
Chicago/Turabian StyleBougoffa, Mouaad, Samir Benmoussa, Mohand Djeziri, and Olivier Palais. 2025. "Hybrid Deep Learning for Fault Diagnosis in Photovoltaic Systems" Machines 13, no. 5: 378. https://doi.org/10.3390/machines13050378
APA StyleBougoffa, M., Benmoussa, S., Djeziri, M., & Palais, O. (2025). Hybrid Deep Learning for Fault Diagnosis in Photovoltaic Systems. Machines, 13(5), 378. https://doi.org/10.3390/machines13050378