Research on Operation Trajectory Tracking Control of Loader Working Mechanisms
Abstract
:1. Introduction
2. Modelling
2.1. Drive Space and Drive Parameters
2.2. Kinematic Modelling
2.2.1. Kinematic Model Based on the D-H Method
2.2.2. Mapping of the Joint Space to the Drive Space
3. Trajectories and Controllers
3.1. Operation Trajectories
3.2. Controllers
3.2.1. NMPC Controller
3.2.2. PID Controller
3.2.3. SMC Controller
4. Validation and Analysis
4.1. Co-Simulation Platform
4.2. Experiments and Analyses
4.3. Comprehensive Tracking Test
4.3.1. Trajectory Tracking Test
4.3.2. Tracking Results and Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PID | Proportional–Integral–Derivative |
MPC | Model Predictive Control |
LMPC | Linear Model Predictive Control |
NMPC | Nonlinear Model Predictive Control |
NEMPC | Nonlinear Error Model Predictive Control |
SMC | Sliding-Mode Control |
RBF | Radial Basis Function |
D–H | Denavit–Hartenberg |
Sgn | Sign Function |
References
- Dadhich, S.; Bodin, U.; Andersson, U. Key challenges in automation of earth-moving machines. Autom. Constr. 2016, 68, 212–222. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Wang, S.; Cai, W.; Wu, Q.; Ma, W. Design and Control Performance Optimization of Variable Structure Hydrostatic Drive Systems for Wheel Loaders. Machines 2024, 12, 238. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Yang, J.; Ge, L.; Hao, Y.; Quan, L. Research on the characteristics of wheel loader boom driven by the asymmetric pump controlled system. J. Mech. Eng. 2021, 57, 258–266. [Google Scholar] [CrossRef]
- Dadhich, S. Automation of Wheel-Loaders. Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden, 2018. [Google Scholar]
- Chen, Y.; Jiang, H.; Shi, G.; Zheng, T. Research on the trajectory and operational performance of wheel loader automatic shoveling. Appl. Sci. 2022, 12, 12919. [Google Scholar] [CrossRef]
- Chen, Y.; Meng, Y.; Xiang, S.; Bai, G.; Liang, G.; Xie, G. Shovel path planning of loader based on beetle antennae search. Comput. Integr. Manuf. Syst. 2023, 29, 2201. [Google Scholar] [CrossRef]
- Meng, Y.; Fang, H.; Liang, G.; Gu, Q.; Liu, L. Bucket trajectory optimization under the automatic scooping of LHD. Energies 2019, 12, 3919. [Google Scholar] [CrossRef]
- Hang, P.; Huang, C.; Hu, Z.; Lv, C. Decision making for connected automated vehicles at urban intersections considering social and individual benefits. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22549–22562. [Google Scholar] [CrossRef]
- Deng, Z.; Hu, W.; Sun, C.; Chu, D.; Huang, T.; Li, W.; Yu, C.; Pirani, M.; Cao, D.; Khajepour, A. Eliminating Uncertainty of Driver’s Social Preferences for Lane Change Decision-Making in Realistic Simulation Environment. IEEE Trans. Intell. Transp. Syst. 2024, 26, 1583–1597. [Google Scholar] [CrossRef]
- Šalinić, S.; Bošković, G.; Nikolić, M. Dynamic modelling of hydraulic excavator motion using Kane’s equations. Autom. Constr. 2014, 44, 56–62. [Google Scholar] [CrossRef]
- Liang, G.; Liu, L.; Meng, Y.; Chen, Y.; Bai, G.; Fang, H. Dynamic Modeling and Analysis of Loader Working Mechanism Considering Cooperative Motion with the Vehicle Body. Machines 2022, 11, 9. [Google Scholar] [CrossRef]
- Gong, J.; Bao, J.; Yi, G.; Cui, Y. Trajectory-following control for manipulator of wheel loaders based on computed torque. J. Mech. Eng. 2010, 46, 141–146. [Google Scholar] [CrossRef]
- Zhang, D.; He, Q.; Hao, P.; Guo, Y. Trajectory tracking control of hydraulic excavator bucket. J. Jilin Univ. 2005, 35, 490–494. [Google Scholar] [CrossRef]
- He, J.; Zhao, X.; Zhang, D.; He, Q. The Hardware-In-Loop simulation research on trajectory control and modeling parameter estimation of working device of hydraulic excavator. In Proceedings of the 2010 IEEE International Conference on Mechatronics and Automation, Xi’an, China, 4–7 August 2010; pp. 1214–1219. [Google Scholar] [CrossRef]
- Yan, J.; Li, B.; Guo, G.; Zeng, Y.; Zhang, M. Adaptive control for bucket position of excavator based on single neuron PID. J. PLA Univ. Sci. Technol. 2012, 13, 316–319. [Google Scholar] [CrossRef]
- Du, Z.; Ye, Z.; Hui, Z.; Hua, B.; Xu, Y.; Jiang, X. The study of trajectory automatic control based on RBF neural network PID control. In Proceedings of the IEEE 2015 International Conference on Fluid Power and Mechatronics (FPM), Harbin, China, 5–7 August 2015; pp. 1234–1238. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, C.; Zhou, X.; Wang, Z.; Guomin, B. Research on trajectory control of end of working device of explosive charging vehicle. Min. Process. Equip. 2016, 44, 7–12. [Google Scholar] [CrossRef]
- Feng, H.; Song, Q.; Ma, S.; Ma, W.; Yin, C.; Cao, D.; Yu, H. A new adaptive sliding mode controller based on the RBF neural network for an electro-hydraulic servo system. ISA Trans. 2022, 129, 472–484. [Google Scholar] [CrossRef]
- Liu, B.; Huang, J.; Lu, J.; Wang, H. Research on trajectory control of skid steer loader in automatic digging. J. Wuhan Univ. Technol. 2010, 32, 107–110. [Google Scholar] [CrossRef]
- Zhang, X.; Kang, L.; Tang, J.; Zhang, J. Trajectory tracking of intelligent excavator using variable universe fuzzy multi-parameter self-tuning PID control. China J. Highw. Transp. 2023, 36, 240–250. [Google Scholar] [CrossRef]
- Azulay, O.; Shapiro, A. Wheel loader scooping controller using deep reinforcement learning. IEEE Access 2021, 9, 24145–24154. [Google Scholar] [CrossRef]
- Guo, X.; Fu, X.; Yan, B.; Zhao, X.; Jiang, Y. Research on motion trajectory of underground scraper working mechanism based on fuzzy-PID control theory. China Min. Mag. 2019, 28, 451–454. [Google Scholar]
- Bouakrif, F.; Zasadzinski, M. Trajectory tracking control for perturbed robot manipulators using iterative learning method. Int. J. Adv. Manuf. Technol. 2016, 87, 2013–2022. [Google Scholar] [CrossRef]
- Park, J.; Lee, B.; Kang, S.; Kim, P.Y.; Kim, H.J. Online learning control of hydraulic excavators based on echo-state networks. IEEE Trans. Autom. Sci. Eng. 2016, 14, 249–259. [Google Scholar] [CrossRef]
- Feng, H.; Yin, C.; Weng, W.; Ma, W.; Zhou, J.; Jia, W.; Zhang, Z. Robotic excavator trajectory control using an improved GA based PID controller. Mech. Syst. Signal Process. 2018, 105, 153–168. [Google Scholar] [CrossRef]
- Borase, R.P.; Maghade, D.; Sondkar, S.; Pawar, S. A review of PID control, tuning methods and applications. Int. J. Dyn. Control 2021, 9, 818–827. [Google Scholar] [CrossRef]
- Abdallaoui, S.; Kribèche, A.; Aglzim, E.H. Comparative Study of MPC and PID Controllers in Autonomous Vehicle Application. Adv. Autom. Mech. Des. Eng. 2022, 121, 133–144. [Google Scholar] [CrossRef]
- Zainuddin, M.; Abdullah, M.; Ahmad, S.; Tofrowaih, K. Performance comparison between predictive functional control and PID algorithms for automobile cruise control system. Int. J. Automot. Mech. Eng. 2022, 19, 9460–9468. [Google Scholar] [CrossRef]
- Guo, H. Dynamic model and model predictive control of dual-channel closed-loop supply chain on Internet. Comput. Integr. Manuf. Syst. 2018, 24, 3157–3164. [Google Scholar] [CrossRef]
- Schwenzer, M.; Ay, M.; Bergs, T.; Abel, D. Review on model predictive control: An engineering perspective. Int. J. Adv. Manuf. Technol. 2021, 117, 1327–1349. [Google Scholar] [CrossRef]
- Charest-Finn, M.; Pejhan, S. Model Predictive Control Used in Passenger Vehicles: An Overview. Machines 2024, 12, 773. [Google Scholar] [CrossRef]
- Gong, J.; Jiang, Y.; Xu, W. Model Predictive Control for Self-Driving Vehicles; Institute of Technology Press: Beijing, China, 2014. [Google Scholar]
- Liu, K.; Zhong, S.; Zhao, K.; Song, Y. Motion control and positioning system of multi-sensor tunnel defect inspection robot: From methodology to application. Sci. Rep. 2023, 13, 232. [Google Scholar] [CrossRef]
- Kouvaritakis, B.; Cannon, M. Model Predictive Control; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Xi, Y.; Li, D.; Lin, S. Model predictive control—status and challenges. Acta Autom. Sin. 2013, 39, 222–236. [Google Scholar] [CrossRef]
- Song, R.; Ye, Z.; Wang, L.; He, T.; Zhang, L. Autonomous wheel loader trajectory tracking control using lpv-mpc. In Proceedings of the IEEE 2022 American Control Conference (ACC), Atlanta, GA, USA, 8–10 June 2022; pp. 2063–2069. [Google Scholar] [CrossRef]
- Urrea, C.; Kern, J.; Torres, V. Design, simulation, and comparison of advanced control strategies for a 3-degree-of-freedom robot. Appl. Sci. 2024, 14, 11010. [Google Scholar] [CrossRef]
- Bai, G.; Luo, W.; Liu, L.; Meng, Y.; Gu, Q.; Li, K. Current status and progress of path tracking control of mining articulated vehicles. Chin. J. Eng. 2021, 43, 193–204. [Google Scholar] [CrossRef]
- Franco, I.J.P.B.; Ribeiro, T.T.; Conceição, A.G.S. A novel visual lane line detection system for a NMPC-based path following control scheme. J. Intell. Robot. Syst. 2021, 101, 12. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, K.; Teng, C.; Sun, X.; Wang, H. Longitudinal and lateral comprehensive trajectory tracking control of intelligent vehicles based on NMPC. Automot. Eng. 2021, 43, 153–161. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, H.; Zhang, Q.; Hao, Z.; Pan, H.; Yang, Y.; Cheng, Y.; Song, Y. Nonlinear model predictive control (NMPC) based trajectory tracking on EAST articulated maintenance arm (EAMA). Fusion Eng. Des. 2021, 163, 112102. [Google Scholar] [CrossRef]
- Heshmati-Alamdari, S.; Karras, G.C.; Kyriakopoulos, K.J. A predictive control approach for cooperative transportation by multiple underwater vehicle manipulator systems. IEEE Trans. Control Syst. Technol. 2021, 30, 917–930. [Google Scholar] [CrossRef]
- Liang, G.; Liu, L.; Meng, Y.; Gu, Q.; Fang, H. Dynamic modelling and accuracy analysis for front-end weighing system of LHD vehicles. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2021, 235, 514–535. [Google Scholar] [CrossRef]
- Liang, G.; Liu, L.; Meng, Y.; Bai, G. Shoveling trajectory tracking control of loader working mechanism. In Proceedings of the IEEE 2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), Ma’anshan, China, 18–20 November 2022; pp. 668–673. [Google Scholar] [CrossRef]
- Liu, J. Sliding Mode Variable Structure Control MATLAB Simulation, 3rd ed.; Tsinghua University Press: Beijing, China, 2015. [Google Scholar]
- Perruquetti, W.; Barbot, J.P. Sliding Mode Control in Engineering; Marcel Dekker Inc.: New York, NY, USA, 2002. [Google Scholar]
- Azar, A.T.; Zhu, Q. Advances and Applications in Sliding Mode Control Systems; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Gao, W. Theory and Design Methods for Variable Structure Control; Science Press: Beijing, China, 1996. (In Chinese) [Google Scholar]
- Bai, G.; Liu, L.; Meng, Y.; Liu, S.; Liu, L.; Luo, W. Real-time path tracking of mobile robot based on nonlinear model predictive control. Trans. Chin. Soc. Agric. Mach. 2020, 51, 47–52. [Google Scholar] [CrossRef]
- Bai, G.; Meng, Y.; Gu, Q.; Li, K.; Li, S. Some rules for setting the horizon parameters of NMPC-based vehicle path tracking. In Proceedings of the IEEE 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 5167–5170. [Google Scholar] [CrossRef]
- Würtz, S.; Göhner, U. Driving style analysis using recurrent neural networks with LSTM cells. J. Adv. Inf. Technol. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Hang, P.; Zhang, Y.; Lv, C. Brain-inspired modeling and decision-making for human-like autonomous driving in mixed traffic environment. IEEE Trans. Intell. Transp. Syst. 2023, 24, 10420–10432. [Google Scholar] [CrossRef]
- He, D.; Ding, B.; Yu, S. Review of fundamental properties and topics of model predictive control for nonlinear systems. Control Theory Appl. 2013, 30, 274–287. [Google Scholar] [CrossRef]
i | ||||
---|---|---|---|---|
1 | 0 | 0 | ||
2 | 0 | 0 | ||
3 | 0 | 0 | ||
4 | 0 | 0 | 0 |
Controllers | c | k | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NMPC | 40 | 0.05 | 0.5 | 10 | 2 | - | - | - | - | - | - |
PID | 40 | 0.05 | 0.5 | - | - | 10 | 100 | 0.005 | - | - | - |
SMC | 40 | 0.05 | 0.5 | - | - | - | - | - | 5 | 0.15 | 7 |
Group | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 1.3 | 0 | 25 | 44 | - | - | - | - |
2 | 1.3 | 0 | 25 | 44 | ||||
3 | 1.0 | 0 | 35 | 44 |
j | 1 | 2 | 3 | 4 | ||||
---|---|---|---|---|---|---|---|---|
1 | 0.4 | 10 | 0.4 | 20 | 0.4 | 30 | 0.4 | 40 |
2 | 0.5 | 10 | 0.5 | 20 | 0.5 | 30 | 0.5 | 40 |
3 | 0.6 | 10 | 0.6 | 20 | 0.6 | 30 | 0.6 | 40 |
4 | 0.7 | 10 | 0.7 | 20 | 0.7 | 30 | 0.7 | 40 |
5 | 0.8 | 10 | 0.8 | 20 | 0.8 | 30 | 0.8 | 40 |
6 | 0.9 | 10 | 0.9 | 20 | 0.9 | 30 | 0.9 | 40 |
7 | 1.0 | 10 | 1.0 | 20 | 1.0 | 30 | 1.0 | 40 |
8 | 1.1 | 10 | 1.1 | 20 | 1.1 | 30 | 1.1 | 40 |
9 | 1.2 | 10 | 1.2 | 20 | 1.2 | 30 | 1.2 | 40 |
10 | 1.3 | 10 | 1.3 | 20 | 1.3 | 30 | 1.3 | 40 |
11 | 1.4 | 10 | 1.4 | 20 | 1.4 | 30 | 1.4 | 40 |
j | 1 | 2 | 3 | 4 | ||||
---|---|---|---|---|---|---|---|---|
Maximum displacement error /(mm) | Maximum angel error/(°) | Maximum displacement error /(mm) | Maximum angel error/(°) | Maximum displacement error /(mm) | Maximum angel error/(°) | Maximum displacement error /(mm) | Maximum angel error/(°) | |
1 | 48.58 | 2.28 | 48.60 | 1.26 | 48.60 | 0.60 | 48.61 | 1.38 |
2 | 48.58 | 2.46 | 48.59 | 1.35 | 48.61 | 0.87 | 48.63 | 1.74 |
3 | 48.59 | 2.25 | 48.60 | 1.08 | 48.62 | 0.90 | 48.66 | 1.86 |
4 | 48.59 | 1.89 | 48.61 | 0.66 | 48.63 | 0.99 | 48.73 | 2.04 |
5 | 48.59 | 1.41 | 48.62 | 0.51 | 48.65 | 1.17 | 49.31 | 2.28 |
6 | 48.60 | 0.90 | 48.63 | 0.48 | 48.90 | 1.41 | 50.69 | 2.64 |
7 | 48.61 | 0.54 | 48.66 | 0.63 | 49.25 | 1.74 | 51.49 | 3.24 |
8 | 48.62 | 0.45 | 48.92 | 0.93 | 49.37 | 2.25 | 52.26 | 3.81 |
9 | 48.64 | 0.51 | 49.33 | 1.35 | 50.18 | 2.88 | 53.30 | 4.53 |
10 | 48.90 | 0.69 | 50.12 | 1.80 | 51.23 | 3.48 | 54.08 | 5.16 |
11 | 49.36 | 0.93 | 51.38 | 2.34 | 53.42 | 4.08 | 56.08 | 5.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, G.; Jiang, Y.; Gao, Z.; Bai, G.; Li, H.; Zhao, X.; Wang, K.; Wang, Z. Research on Operation Trajectory Tracking Control of Loader Working Mechanisms. Machines 2025, 13, 165. https://doi.org/10.3390/machines13020165
Liang G, Jiang Y, Gao Z, Bai G, Li H, Zhao X, Wang K, Wang Z. Research on Operation Trajectory Tracking Control of Loader Working Mechanisms. Machines. 2025; 13(2):165. https://doi.org/10.3390/machines13020165
Chicago/Turabian StyleLiang, Guodong, Yong Jiang, Zeyu Gao, Guoxing Bai, Hengtong Li, Xiaoyan Zhao, Kai Wang, and Zhiyan Wang. 2025. "Research on Operation Trajectory Tracking Control of Loader Working Mechanisms" Machines 13, no. 2: 165. https://doi.org/10.3390/machines13020165
APA StyleLiang, G., Jiang, Y., Gao, Z., Bai, G., Li, H., Zhao, X., Wang, K., & Wang, Z. (2025). Research on Operation Trajectory Tracking Control of Loader Working Mechanisms. Machines, 13(2), 165. https://doi.org/10.3390/machines13020165