An Improved IPMSM Discrete-Time Nonlinear Model for Hardware-in-the-Loop Test Systems
Abstract
:1. Introduction
2. Conventional IPMSM Model
3. Nonlinear IPMSM Model Considering Magnetic Saturation, Cross-Coupling, Spatial Harmonics, Temperature, and Iron Loss Effects
3.1. The IPMSM Prototype
3.2. Magnetic Saturation and Cross-Coupling Effects
3.3. Spatial Harmonics Effect
3.4. Temperature Effect
3.5. Iron Loss Effect
4. Hardware-in-Loop Verification
4.1. Test Platform
4.2. Case 1: Validation of Magnetic Saturation, Cross-Coupling, and Spatial Harmonic Effect
4.3. Case 2: Validation of Temperature Effect
4.4. Case 3: Validation of Iron Loss Effect
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Terms | Units | Meaning |
IPMSM | Interior permanent magnet synchronous motor | |
FPGA | Field programmable gate array | |
LuT | Look-up table | |
FEA | Finite element analysis | |
A | Stator current | |
A | d- and q-axis stator current | |
A | Iron loss current component | |
A | Magnetization current component | |
mH | d- and q-axis inductance | |
Wb | d- and q-axis stator flux-linkage | |
Wb | Permanent-magnet flux-linkage | |
Number of pole pairs | ||
V | d- and q-axis stator voltage | |
rad/s | Electrical rotor speed | |
RPM | Mechanical rotor speed | |
rad | Electrical rotor position angle | |
Nm | Electromagnetic torque | |
Ω | Stator winding resistance | |
Ω | Resistance at reference temperature | |
1/°C | Temperature coefficient of resistance | |
°C | Reference temperature in FEA software | |
°C | Temperature set for the stator winding in the IPMSM model | |
°C | Temperature set for permanent magnet in the IPMSM model | |
°C | Base value of temperature variance | |
Ω | d- and q-axis iron loss resistence | |
W | Total eddy current loss power | |
W | Total hysteresis loss power | |
W | d- and q-axis total iron loss power | |
W | d- and q-axis eddy current loss power | |
W | d- and q-axis hysteresis loss power | |
d-axis flux-linkage function considering saturation and cross-coupling effects | ||
q-axis flux-linkage function considering saturation and cross-coupling effects | ||
d-axis current function considering saturation and cross-coupling effects | ||
q-axis current function with considering saturation and cross-coupling effects | ||
d-axis flux-linkage function considering saturation, cross-coupling and spatial harmonics effects | ||
q-axis flux-linkage function considering saturation, cross-coupling and spatial harmonics effects | ||
d-axis current function considering saturation, cross-coupling and spatial harmonics effects | ||
q-axis current function considering saturation, cross-coupling and spatial harmonics effects | ||
d-axis flux-linkage function considering saturation, cross-coupling, spatial harmonics and temperature effects | ||
q-axis flux-linkage function considering saturation, cross-coupling, spatial harmonics and temperature effects |
Appendix A
Details of Current Shift Equation
Temperature [°C] | Flux-Linkage [Wb] | Current [A] | d-axis Current Shift [A] | q-axis Current Shif [A] | Temperature Difference [°C] | ||
---|---|---|---|---|---|---|---|
I | A1 | 20 | (0.22,0.35) | (32.5,117.6) | / | / | / |
B1 | 60 | (0.22,0.35) | (37.6,115.8) | 5.1 | −1.8 | 40 | |
C1 | 100 | (0.22,0.35) | (42.7,113.9) | 10.2 | −3.7 | 80 | |
D1 | 140 | (0.22,0.35) | (47.7,112.2) | 15.2 | −5.4 | 120 | |
II | A2 | 20 | (0.02,0.25) | (−95.7,59.3) | / | / | / |
B2 | 60 | (0.02,0.25) | (−89.5,57.9) | 6.2 | −1.4 | 40 | |
C2 | 100 | (0.02,0.25) | (−83.2,56.4) | 12.5 | −2.9 | 80 | |
D2 | 140 | (0.02,0.25) | (−77,55) | 18.7 | −4.3 | 120 | |
III | A3 | 20 | (−0.08,−0.35) | (−174.4,−121.5) | / | / | / |
B3 | 60 | (−0.08,−0.35) | (−167.8,−119.4) | 6.6 | 2.1 | 40 | |
C3 | 100 | (−0.08,−0.35) | (−160.9,−117.2) | 13.5 | 4.3 | 80 | |
D3 | 140 | (−0.08,−0.35) | (−154.1,−114.9) | 20.3 | 6.6 | 120 | |
IV | A4 | 20 | (0.22,−0.35) | (32.2,−117.6) | / | / | / |
B4 | 60 | (0.22,−0.35) | (37.6,−115.8) | 5.4 | 1.8 | 40 | |
C4 | 100 | (0.22,−0.35) | (42.8,−113.9) | 10.6 | 3.7 | 80 | |
D4 | 140 | (0.22,−0.35) | (47.9,−112.2) | 15.7 | 5.4 | 120 |
References
- Arias, N.B.; Hashemi, S.; Andersen, P.B.; Træholt, C.; Romero, R. Distribution System Services Provided by Electric Vehicles: Recent Status, Challenges, and Future Prospects. IEEE Trans. Intell. Transp. Syst. 2019, 20, 4277–4296. [Google Scholar] [CrossRef]
- Agamloh, E.; von Jouanne, A.; Yokochi, A. An Overview of Electric Machine Trends in Modern Electric Vehicles. Machines 2020, 8, 20. [Google Scholar] [CrossRef]
- Alibeik, M.; dos Santos, E.C. High-Torque Electric Machines: State of the Art and Comparison. Machines 2022, 10, 636. [Google Scholar] [CrossRef]
- Pellegrino, G.; Vagati, A.; Guglielmi, P.; Boazzo, B. Performance Comparison between Surface-Mounted and Interior PM Motor Drives for Electric Vehicle Application. IEEE Trans. Ind. Electron. 2012, 59, 803–811. [Google Scholar] [CrossRef]
- Yang, Y.; Castano, S.M.; Yang, R.; Kasprzak, M.; Bilgin, B.; Sathyan, A.; Dadkhah, H.; Emadi, A. Design and Comparison of Interior Permanent Magnet Motor Topologies for Traction Applications. IEEE Trans. Transp. Electrif. 2017, 3, 86–97. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Chu, W.Q.; Guan, Y. Quantitative Comparison of Electromagnetic Performance of Electrical Machines for Hevs/Evs. CES Trans. Electr. Mach. Syst. 2017, 1, 37–47. [Google Scholar] [CrossRef]
- Sahu, A.K.; Haddad, R.Z.; Al-Ani, D.; Bilgin, B. Thermomechanical Rotor Fatigue of an Interior Permanent Magnet Synchronous Motor. Machines 2024, 12, 158. [Google Scholar] [CrossRef]
- Sul, S.-K. Basic Structure and Modeling of Electric Machines and Power Converters. In Control of Electric Machine Drive Systems; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Zhu, Z.Q.; Wu, X.M. Fundamental Model-Based Sensorless Control. In Sensorless Control of Permanent Magnet Synchronous Machine Drives; Wiley: Hoboken, NJ, USA, 2023. [Google Scholar]
- Dufour, C.; Belanger, J.; Abourida, S.; Lapointe, V. Fpga-Based Real-Time Simulation of Finite-Element Analysis Permanent Magnet Synchronous Machine Drives. In Proceedings of the 2007 IEEE Power Electronics Specialists Conference, Orlando, FL, USA, 17–21 June 2007. [Google Scholar]
- Xu, F.; Dinavahi, V.; Xu, X. Hybrid Analytical Model of Switched Reluctance Machine for Real-Time Hardware-in-the-Loop Simulation. IET Electr. Power Appl. 2017, 11, 1114–1123. [Google Scholar] [CrossRef]
- Bastos, R.F.; Silva, F.B.; Aguiar, C.R.; Fuzato, G.; Machado, R.Q. Low-Cost Hardware-in-the-Loop for Real-Time Simulation of Electric Machines and Electric Drive. IET Electr. Power Appl. 2020, 14, 1679–1685. [Google Scholar] [CrossRef]
- Stumberger, G.; Polajzer, B.; Stumberger, B.; Toman, M.; Dolinar, D. Evaluation of Experimental Methods for Determining the Magnetically Nonlinear Characteristics of Electromagnetic Devices. IEEE Trans. Magn. 2005, 41, 4030–4032. [Google Scholar] [CrossRef]
- Chen, X.; Wang, J.; Sen, B.; Lazari, P.; Sun, T. A High-Fidelity and Computationally Efficient Model for Interior Permanent-Magnet Machines Considering the Magnetic Saturation, Spatial Harmonics, and Iron Loss Effect. IEEE Trans. Ind. Electron. 2015, 62, 4044–4055. [Google Scholar] [CrossRef]
- Dufour, C.; Abourida, S.; Belanger, J. Real-Time Simulation of Permanent Magnet Motor Drive on Fpga Chip for High-Bandwidth Controller Tests and Validation. In Proceedings of the 2006 IEEE International Symposium on Industrial Electronics, Montreal, QC, Canada, 9–13 July 2006. [Google Scholar]
- Florin, P.P.; Mircea, R.; Raul, N.; Martis, C.; Adrian-Cornel, P. Real-Time Model in the Loop Analysis of Pmsm for Electric Power Steering System Based on Fpga Implementation. In Proceedings of the 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Amalfi, Italy, 20–22 June 2018. [Google Scholar]
- Janouš, Š.; Talla, J.; Košan, T.; Peroutka, Z. Fpga-Based Real-Time Hil Simulator of Permanent Magnet Synchronous Motor Drive. In Proceedings of the 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC), Gliwice, Poland, 25–29 April 2021. [Google Scholar]
- Hu, D.; Alsmadi, Y.M.; Xu, L. High-Fidelity Nonlinear IPM Modeling Based on Measured Stator Winding Flux Linkage. IEEE Trans. Ind. Appl. 2015, 51, 3012–3019. [Google Scholar] [CrossRef]
- Quéval, L.; Ohsaki, H. Nonlinear Abc-Model for Electrical Machines Using N-D Lookup Tables. IEEE Trans. Energy Convers. 2015, 30, 316–322. [Google Scholar] [CrossRef]
- Luo, G.; Zhang, R.; Chen, Z.; Tu, W.; Zhang, S.; Kennel, R. A Novel Nonlinear Modeling Method for Permanent-Magnet Synchronous Motors. IEEE Trans. Ind. Electron. 2016, 63, 6490–6498. [Google Scholar] [CrossRef]
- Xu, L.; Xu, X.; Lipo, T.A.; Novotny, D.W. Vector Control of a Synchronous Reluctance Motor Including Saturation and Iron Loss. IEEE Trans. Ind. Appl. 1991, 27, 977–985. [Google Scholar] [CrossRef]
- Morimoto, S.; Tong, Y.; Takeda, Y.; Hirasa, T. Loss Minimization Control of Permanent Magnet Synchronous Motor Drives. IEEE Trans. Ind. Electron. 1994, 41, 511–517. [Google Scholar] [CrossRef]
- Dück, P.; Ponick, B. A Novel Iron-Loss-Model for Permanent Magnet Synchronous Machines in Traction Applications. In Proceedings of the 2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Toulouse, France, 2–4 November 2016. [Google Scholar]
- Urasaki, N.; Senjyu, T.; Uezato, K. A Novel Calculation Method for Iron Loss Resistance Suitable in Modeling Permanent-Magnet Synchronous Motors. IEEE Trans. Energy Convers. 2003, 18, 41–47. [Google Scholar] [CrossRef]
- Li, S.; Han, D.; Sarlioglu, B. Modeling of Interior Permanent Magnet Machine Considering Saturation, Cross Coupling, Spatial Harmonics, and Temperature Effects. IEEE Trans. Transp. Electrif. 2017, 3, 682–693. [Google Scholar] [CrossRef]
- Cai, H.; Hu, D. On Pmsm Model Fidelity and Its Implementation in Simulation. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018. [Google Scholar]
- Di Tommaso, A.O.; Miceli, R.; Nevoloso, C.; Scaglione, G.; Schettino, G. Improved High-Fidelity IPMSM mathematical model Including Saturation, Cross-Coupling, Torque Ripple and Iron Loss effects. In Proceedings of the 2022 International Conference on Electrical Machines (ICEM), Valencia, Spain, 5–8 September 2022; pp. 21–27. [Google Scholar]
- Wang, M. A Novel Mathematical Nonlinear PMSM Realization Method for Electric Machine Emulator. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 4171–4181. [Google Scholar] [CrossRef]
- Sintered Neodymium-Iron-Boron Magnets N38UH. Available online: https://www.arnoldmagnetics.com/wp-content/uploads/2017/11/N38UH-151021.pdf (accessed on 12 July 2016).
Parameters | Value |
---|---|
Number of pole pairs | 4 |
Number of slots | 48 |
Rated speed | 1500 RPM |
Maximum speed | 6000 RPM |
Rated torque | 230 Nm |
Rated power | 36 kW |
DC-bus voltage | 500 V |
Maximum current | 250 A |
Stator outer diameter | 269 mm |
Rotor outer diameter | 160 mm |
Active stack length | 84 mm |
2000 RPM | 4000 RPM | 6000 RPM | |
---|---|---|---|
d-axis total current | −64.27 A | −64.27 A | −64.27 A |
Iron loss current | −1.63 A | −3.23 A | −4.83 A |
Magnetization current | −62.64 A | 61.04 A | 59.44 A |
Percentage of iron loss current | 2.54% | 5.03% | 7.52% |
Torque without iron losses | 54.2 Nm | 54.2 Nm | 54.2 Nm |
Torque with iron losses | 53.5 Nm | 52.2 Nm | 51.6 Nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Zhu, G.; Luo, J. An Improved IPMSM Discrete-Time Nonlinear Model for Hardware-in-the-Loop Test Systems. Machines 2025, 13, 164. https://doi.org/10.3390/machines13020164
Fan Y, Zhu G, Luo J. An Improved IPMSM Discrete-Time Nonlinear Model for Hardware-in-the-Loop Test Systems. Machines. 2025; 13(2):164. https://doi.org/10.3390/machines13020164
Chicago/Turabian StyleFan, Yingpeng, Guoqing Zhu, and Jian Luo. 2025. "An Improved IPMSM Discrete-Time Nonlinear Model for Hardware-in-the-Loop Test Systems" Machines 13, no. 2: 164. https://doi.org/10.3390/machines13020164
APA StyleFan, Y., Zhu, G., & Luo, J. (2025). An Improved IPMSM Discrete-Time Nonlinear Model for Hardware-in-the-Loop Test Systems. Machines, 13(2), 164. https://doi.org/10.3390/machines13020164