Determining Relevant 3D Roughness Parameters for Sandblasted Surfaces: A Methodological Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Three-Dimensional Topographic Data Pre-Processing
- Initial Map (Figure 3a). The raw topographic map was imported directly from the measurement instrument (format: OPDx). Heights were expressed in μm. Before any treatment, the map was visually inspected to ensure the absence of acquisition errors (missing scan lines, saturation artifacts, misalignment or stitching error).
- Filling Missing Data (Figure 3b). Missing or invalid points (e.g., masked areas, saturated or unmeasured pixels) were filled using spline interpolation. A bicubic (or tensor) spline was applied to ensure smooth continuity of the first derivatives and to minimize artificial oscillations. This step provided a complete and continuous height field, required for subsequent global operations such as form removal.
- Form Removal (Figure 3c). The global form (slow-varying background) was estimated and removed by fitting a third-order polynomial surface using least squares:The fitted background was subtracted from the interpolated map to obtain the detrended surface. The choice of a third-order polynomial allows removal of large-scale curvature without affecting the relevant micro- and meso-scale roughness features.
- Outlier Suppression (Figure 3d). Extreme values in the height distribution—typically caused by dust particles or measurement noise—were eliminated by retaining only the data points between the 0.01% and 99.99% percentiles of the height histogram. Formally, if Pp denotes the p-th percentile, only heights (z) satisfying:were kept. Points outside this interval were marked as missing and handled in the next step. This strict filtering window efficiently removes rare, non-physical outliers while preserving the genuine surface variability.
- Second Filling (Figure 3e). After outlier removal, the newly missing data points were again filled by spline interpolation, using the same method as before. This second interpolation ensures smooth continuity and prevents edge effects during the following form correction.
- Second Form Removal (Figure 3f). A second polynomial form removal (order 3) was applied to the corrected surface to eliminate any residual background curvature introduced during the previous interpolation or filtering steps. This iteration ensures that the final map contains only the surface texture and roughness components relevant for analysis.
2.3. Analysis Parameters
- Sa—arithmetic mean height, which gives a global view of the average roughness;
- Sal—auto-correlation length, which indicates characteristic length of patterns;
- Str—texture aspect ratio, which measures the isotropy, or the anisotropy, of the surface;
- Sdq—root mean square gradient, which indicates the average value of the surface variations;
- Sdr—developed interfacial area ratio, which quantifies the real surface area according to a flat plane;
- Spd—density of peaks, which represents the number of peaks by surface unit;
- Spc—arithmetic mean peak curvature, which characterizes the shape of asperities;
- Sfd—fractal dimension, which measures the surface complexity at different scales.
3. Results and Modeling
- The abrasive particles size used in sandblasting processes have a specific role on the making of roughness: the greater the size, the more important the irregularities on the surface. Bigger particles are heavier, and so have more inertia and more energy allowing them to penetrate deeper into the surface. This leads to deeper crater and more highlighted irregularities. Furthermore, due to their size, the surface distribution of the impacts can become more heterogeneous, which can lead to rougher surfaces with various structures.
- In sandblasting processes, pressure gives their kinetic energy to the particles. Higher pressure leads to higher velocity of the particles, which leads to higher impacts. High energy impacts lead to bigger deformations and so increase the roughness. This also leads to let particles to penetrate deeper into the surface with the same consequences than with the grit size. A higher pressure can also lead to a higher impact rate by surface unit, increasing proportionally the roughness.
4. Evaluation of the Regression Coefficients and Their Uncertainties
5. Physics Origin of the Sa Model
5.1. Modeling
5.2. Validation Protocol
- Simulation of Surface Roughness Data: Define a proportionality constant (k = 0.01). Simulate Sa for all combinations of particle diameters (D = 25, 50, 90, 125, 250) and pressures (P = 2, 3, 4). Compute Sa using (9).
- Bilinear Regression: Fit a bilinear model to the simulated data using Equation (12) (Figure 10). Estimate the coefficients a, b and d using nonlinear regression software (Table 5). Here, a represents a possible measurement offset due to the elastic barrier that must be overcome before a plastic action can be exerted on the surface. b captures the effect of particle size, and d accounts for the coupled influence of particle size and pressure.
- Validation of the Approximation: Compare predicted values from the bilinear model with the simulated ones (Figure 11). The relative errors between the predicted and simulated Sa values were very small, ranging from approximately (−0.0049) to (0.0086), with a mean close to zero (0.0064) and a standard deviation of 0.0086. This confirms that the bilinear model accurately reproduces the physically based simulated roughness across the experimental ranges of particle size and pressure.
- Interpretation: A small error confirms that the bilinear model sufficiently captures the dependency of Sa on D and P within the experimental range.
6. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A


Appendix B







Appendix C
Appendix C.1. Paired Data Bootstrap Method
Appendix C.2. Residuals Bootstrap Method
Appendix D
| Roughness Parameter | Mean Value | Min. | Max. | 95% CI | Roughness Parameter | Mean Value | Min. | Max. | 95% CI | ||
|---|---|---|---|---|---|---|---|---|---|---|---|
| S10z | 0.284 | −2.184 | 2.996 | −1.072 | 1.649 | Shaq | 2.306 | −81.21 | 76.77 | −33.10 | 35.80 |
| S5p | 0.251 | −2.052 | 2.516 | −0.764 | 1.362 | Shar | −0.025 | −0.090 | 0.060 | −0.058 | 0.017 |
| S5v | 0.036 | −1.294 | 1.395 | −0.586 | 0.748 | Sharq | −0.015 | −0.091 | 0.084 | −0.049 | 0.029 |
| Sa | −0.008 | −0.238 | 0.275 | −0.136 | 0.131 | Sharx | 0.724 | −4.424 | 8.519 | −1.854 | 4.115 |
| Sak1 | 0.009 | −0.035 | 0.058 | −0.015 | 0.035 | Shax | −78.67 | −919 | 847.6 | −507.6 | 369 |
| Sak2 | 0.006 | −0.029 | 0.041 | −0.012 | 0.023 | Shed | 0.463 | −0.793 | 1.449 | −0.125 | 0.996 |
| Sal | 0.879 | −1.639 | 3.063 | −0.402 | 2.114 | Shedq | 0.339 | −1.108 | 1.460 | −0.212 | 0.837 |
| Sda | 5.257 | −20.77 | 27.75 | −6.740 | 14.58 | Shedx | 1.684 | −5.186 | 8.175 | −1.694 | 5.053 |
| Sdaq | 8.571 | −72.08 | 86.85 | −19.09 | 34.78 | Shff | −0.006 | −0.022 | 0.009 | −0.013 | 0.002 |
| Sdarq | −0.006 | −0.095 | 0.109 | −0.057 | 0.056 | Shffq | 0.0002 | −0.003 | 0.003 | −0.001 | 0.002 |
| Sdarx | −0.425 | −7.258 | 6.743 | −3.804 | 3.164 | Shffx | −0.025 | −0.166 | 0.099 | −0.089 | 0.031 |
| Sdax | 65.36 | −675.9 | 837.9 | −284.9 | 442.3 | Shh | 0.034 | −0.208 | 0.302 | −0.081 | 0.150 |
| Sdc | −0.007 | −0.708 | 0.824 | −0.397 | 0.430 | Shhq | 0.016 | −0.090 | 0.130 | −0.039 | 0.075 |
| Sdd | 0.045 | −0.222 | 0.297 | −0.089 | 0.179 | Shhx | 0.310 | −1.787 | 1.807 | −0.480 | 1.058 |
| Sddq | 0.027 | −0.105 | 0.158 | −0.044 | 0.098 | Shn | −4817 | −18,590 | 9764.7 | −12,427 | 2743 |
| Sddx | 0.255 | −1.503 | 1.982 | −0.631 | 1.170 | Shrn | 0.001 | −0.003 | 0.005 | −0.001 | 0.003 |
| Sded | 0.321 | −0.744 | 1.198 | −0.189 | 0.756 | Shrnx | −0.002 | −0.025 | 0.022 | −0.014 | 0.011 |
| Sdedq | 0.301 | −0.925 | 1.406 | −0.212 | 0.724 | Shv | 0.597 | −15.83 | 12.34 | −4.797 | 5.753 |
| Sdedx | 2.045 | −4.253 | 8.685 | −1.196 | 5.191 | Shvq | −2.490 | −68.43 | 62.46 | −29.06 | 24.40 |
| Sdff | −0.005 | −0.019 | 0.010 | −0.012 | 0.002 | Shvx | −106.9 | −2330 | 2363 | −925.7 | 723.4 |
| Sdffq | 0.0004 | −0.002 | 0.003 | −0.001 | 0.002 | Sk | −0.103 | −1.022 | 0.894 | −0.625 | 0.404 |
| Sdffx | −0.032 | −0.159 | 0.078 | −0.091 | 0.035 | Sku | 0.574 | −1.991 | 5.066 | −0.353 | 2.260 |
| Sdn | −4267 | −19,567 | 10,444 | −12,479 | 3380 | Smc | 0.002 | −0.328 | 0.414 | −0.187 | 0.210 |
| Sdq | −0.012 | −0.319 | 0.316 | −0.187 | 0.164 | Smr | −0.144 | −0.876 | 0.448 | −0.451 | 0.170 |
| Sdr | −1.317 | −18.64 | 15.34 | −10.69 | 7.984 | Smrk1 | 0.152 | −1.169 | 1.483 | −0.450 | 0.762 |
| Sdrn | 0.0002 | −0.007 | 0.005 | −0.003 | 0.003 | Smrk2 | −0.025 | −1.095 | 0.733 | −0.460 | 0.368 |
| Sdrnq | −0.001 | −0.003 | 0.002 | −0.002 | 0.001 | Sp | 0.258 | −1.86 | 2.869 | −0.762 | 1.414 |
| Sdrnx | −0.006 | −0.032 | 0.022 | −0.017 | 0.006 | Spc | −0.070 | −1.279 | 1.251 | −0.715 | 0.565 |
| Sds | −0.006 | −0.026 | 0.016 | −0.018 | 0.006 | Spd | −0.005 | −0.020 | 0.009 | −0.013 | 0.003 |
| Sdv | 1.215 | −8.859 | 9.604 | −3.026 | 4.574 | Spk | 0.035 | −0.442 | 0.539 | −0.201 | 0.269 |
| Sdvq | 5.709 | −66.43 | 57.87 | −20.55 | 27.18 | Spkx | 0.308 | −1.732 | 2.826 | −0.767 | 1.552 |
| Sdvx | 160.9 | −2060 | 2272 | −800.1 | 1004 | Sq | 0.002 | −0.263 | 0.335 | −0.148 | 0.171 |
| Sfd | −0.015 | −0.058 | 0.024 | −0.039 | 0.007 | Ssc | −0.052 | −0.661 | 0.653 | −0.398 | 0.294 |
| Sha | 6.625 | −31.67 | 40.09 | −9.138 | 19.74 | Ssk | 0.078 | −0.234 | 0.448 | −0.055 | 0.228 |
| Roughness parameter | Mean Value | Min. | Max. | 95% CI | |||||||
| Ssw | −3.623 | −16.92 | 13.04 | −10.65 | 4.184 | ||||||
| St | 0.282 | −2.638 | 3.032 | −1.067 | 1.663 | ||||||
| Std | 1.244 | −18.59 | 21.42 | −7.598 | 10.82 | ||||||
| Str | −0.002 | −0.106 | 0.137 | −0.054 | 0.050 | ||||||
| Sv | 0.035 | −1.180 | 1.579 | −0.591 | 0.745 | ||||||
| Svc | −0.009 | −1.855 | 1.815 | −0.912 | 0.899 | ||||||
| Svd | −0.004 | −0.020 | 0.011 | −0.012 | 0.004 | ||||||
| Svk | 0.031 | −0.424 | 0.525 | −0.184 | 0.260 | ||||||
| Svkx | 0.086 | −0.989 | 1.245 | −0.416 | 0.600 | ||||||
| Sz | 0.287 | −2.650 | 3.087 | −1.055 | 1.652 | ||||||
| Vm | 0.002 | −0.02 | 0.023 | −0.010 | 0.013 | ||||||
| Vmc | −0.016 | −0.299 | 0.299 | −0.171 | 0.148 | ||||||
| Vmp | 0.002 | −0.022 | 0.026 | −0.010 | 0.013 | ||||||
| Vv | 0.004 | −0.349 | 0.389 | −0.187 | 0.218 | ||||||
| Vvc | 0.0003 | −0.330 | 0.399 | −0.171 | 0.192 | ||||||
| Vvv | 0.002 | −0.040 | 0.046 | −0.020 | 0.026 | ||||||
References
- Tawade, P.; Shembale, S.; Hussain, S.; Sabiruddin, K. Effects of Different Grit Blasting Environments on the Prepared Steel Surface. J. Therm. Spray Technol. 2023, 32, 1535–1553. [Google Scholar] [CrossRef]
- Zhang, Z.; Shen, Z.; Wu, H.; Li, L.; Fu, X. Study on Preparation of Superhydrophobic Ni-Co Coating and Corrosion Resistance by Sandblasting–Electrodeposition. Coatings 2020, 10, 1164. [Google Scholar] [CrossRef]
- Wang, J.; Ai, C.; Yun, X.; Chen, Z.; He, B. Effects of 3D Roughness Parameters of Sandblasted Surface on Bond Strength of HVOF Sprayed WC-12Co Coatings. Coatings 2022, 12, 1451. [Google Scholar] [CrossRef]
- Deng, H.; Xu, K.; Liu, S.; Zhang, C.; Zhu, X.; Zhou, H.; Xia, C.; Shi, C. Impact of Engineering Surface Treatment on Surface Properties of Biomedical TC4 Alloys under a Simulated Human Environment. Coatings 2022, 12, 157. [Google Scholar] [CrossRef]
- Zhou, X.; Kang, M.; Liu, J.; Lin, J.; Ndumia, J.N.; Yang, J. Effect of Grit-Blasting Pretreatment on the Bond Strength of Arc-Sprayed Fe-Based Coating. JOM 2023, 75, 3268–3276. [Google Scholar] [CrossRef]
- Miturska-Barańska, I.; Rudawska, A.; Doluk, E. The Influence of Sandblasting Process Parameters of Aerospace Aluminium Alloy Sheets on Adhesive Joints Strength. Materials 2021, 14, 6626. [Google Scholar] [CrossRef]
- Paul, B.; Hofmann, A.; Weinert, S.; Frank, F.; Wolff, U.; Krautz, M.; Edelmann, J.; Gee, M.W.; Reeps, C.; Hufenbach, J. Effect of Blasting Treatments on the Surface Topography and Cell Adhesion on Biodegradable FeMn-Based Stents Processed by Laser Powder Bed Fusion. Adv. Eng. Mater. 2022, 24, 2200961. [Google Scholar] [CrossRef]
- Faadhila, A.; Taufiqurrakhman, M.; Katili, P.A.; Rahman, S.F.; Lestari, D.C.; Whulanza, Y. Optimizing PEEK implant surfaces for improved stability and biocompatibility through sandblasting and the platinum coating approach. Front. Mech. Eng. 2024, 10, 1360743. [Google Scholar] [CrossRef]
- Al Qahtani, W.; Schille, C.; Spintzyk, S.; Al Qahtani, M.; Engel, E.; Geis-Gerstorfer, J.; Rupp, F.; Scheideler, L. Effect of surface modification of zirconia on cell adhesion, metabolic activity and proliferation of human osteoblasts. Biomed. Eng./Biomed. Tech. 2017, 62, 75–87. [Google Scholar] [CrossRef]
- Stoilov, M.; Stoilov, L.; Enkling, N.; Stark, H.; Winter, J.; Marder, M.; Kraus, D. Effects of Different Titanium Surface Treatments on Adhesion, Proliferation and Differentiation of Bone Cells: An In Vitro Study. J. Funct. Biomater. 2022, 13, 143. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.F.; Chang, K.C.; Sun, Y.S.; Nguyen, D.T.; Huang, H.H. Combining Sandblasting, Alkaline Etching, and Collagen Immobilization to Promote Cell Growth on Biomedical Titanium Implants. Polymers 2021, 13, 2550. [Google Scholar] [CrossRef]
- Fraulob, M.; Vayron, R.; Le Cann, S.; Lecuelle, B.; Hérivaux, Y.; Albini Lomami, H.; Flouzat Lachaniette, C.H.; Haïat, G. Quantitative ultrasound assessment of the influence of roughness and healing time on osseointegration phenomena. Sci. Rep. 2020, 10, 21962. [Google Scholar] [CrossRef]
- Shaaban, S.; Bekheet, S.; Abdallah, S.; Mahmoud, T. Effect of Sandblasting Surface Treatment on the Bond Strength and Surface Roughness between the 3D-Printed Denture Base and Silicon-Based Soft Liner. Egypt. Dent. J. 2023, 69, 2175–2184. [Google Scholar] [CrossRef]
- Ciobotaru, I.A.; Stoicanescu, M.; Budei, R.; Cojocaru, A.; Vaireanu, D.-I. Considerations Regarding Sandblasting of Ti and Ti6Al4V Used in Dental Implants and Abutments as a Preconditioning Stage for Restorative Dentistry Works. Appl. Sci. 2024, 14, 7365. [Google Scholar] [CrossRef]
- Osak, P.; Maszybrocka, J.; Zubko, M.; Rak, J.; Bogunia, S.; Łosiewicz, B. Influence of Sandblasting Process on Tribological Properties of Titanium Grade 4 in Artificial Saliva for Dentistry Applications. Materials 2021, 14, 7536. [Google Scholar] [CrossRef] [PubMed]
- Zhixin, W.; Xian, R.; Lei, Z.; Xueyang, X.; Hui, M. Effects of Substrate Surface Characteristics on the Adhesion Properties of Geopolymer Coatings. ACS Omega 2022, 7, 11988–11994. [Google Scholar] [CrossRef]
- Nonnenmann, T.; Beygi, R.; Carbas, R.J.C.; da Silva, L.F.; Öchsner, A. Synergetic effect of adhesive bonding and welding on fracture load in hybrid joints. J. Adv. Join. Process. 2022, 6, 100122. [Google Scholar] [CrossRef]
- Tan, B.; Hu, Y.; Yuan, B.; Hu, X.; Huang, Z. Optimizing adhesive bonding between CFRP and Al alloy substrate through resin pre-coating by filling micro-cavities from sandblasting. Int. J. Adhes. Adhes. 2021, 110, 102952. [Google Scholar] [CrossRef]
- Kido, D.; Komatsu, K.; Suzumura, T.; Matsuura, T.; Cheng, J.; Kim, J.; Park, W.; Ogawa, T. Influence of Surface Contaminants and Hydrocarbon Pellicle on the Results of Wettability Measurements of Titanium. Int. J. Mol. Sci. 2023, 24, 14688. [Google Scholar] [CrossRef]
- Lillemäe-Avi, I.; Liinalampi, S.; Lehtimäki, E.; Remes, H.; Lehto, P.; Romanoff, J.; Ehlers, S.; Niemelä, A. Fatigue strength of high-strength steel after shipyard production process of plasma cutting, grinding, and sandblasting. Weld World 2018, 62, 1273–1284. [Google Scholar] [CrossRef]
- Lara, A.; Roca, M.; Parareda, S.; Cuadrado, N.; Calvo, J.; Casellas, D. Effect of Sandblasting on Low and High-Cycle Fatigue Behaviour after Mechanical Cutting of a Twinning-Induced Plasticity Steel. MATEC Web Conf. 2018, 165, 18002. [Google Scholar] [CrossRef]
- Sun, X.D.; Liu, T.T.; Wang, Q.Q.; Zhang, J.; Cao, M.S. Surface Modification and Functionalities for Titanium Dental Implants. ACS Biomater. Sci. Eng. 2023, 9, 4442–4461. [Google Scholar] [CrossRef]
- Wennerberg, A.; Albrektsson, T. Effects of titanium surface topography on bone integration: A systematic review. Clin. Oral Implant. Res. 2009, 20 (Suppl. 4), 172–184. [Google Scholar] [CrossRef]
- Ogawa, T.; Hirota, M.; Shibata, R.; Matsuura, T.; Komatsu, K.; Saruta, J.; Att, W. The 3D theory of osseointegration: Material, topography, and time as interdependent determinants of bone-implant integration. Int. J. Implant Dent. 2025, 11, 49. [Google Scholar] [CrossRef]
- Ho, H.S.; Bigerelle, M.; Vincent, R.; Deltombe, R. Correlation modeling between process condition of sandblasting and surface texture: A multi-scale approach. Scanning 2016, 38, 191–201. [Google Scholar] [CrossRef]
- As’ad, M.; Febriantoko, B.W.; Riyadi, T.W.B.; Pahlevi, R.F. The Influence of Air Pressure on Surface Roughness Values in the Sandblasting Process of ST-37 Steel Plates. Eng. Proc. 2024, 63, 28. [Google Scholar] [CrossRef]
- Aldio, R.Z.; Dedikarni; Saputra, B. Effect of Spraying and Mesh Size on Surface Roughness of SS400 Steel Sandblasting Process. J. Renew. Energy Mech. 2021, 4, 63–75. [Google Scholar] [CrossRef]
- Queiroz, J.R.; Botelho, M.A.; Sousa, S.A.; Martinelli, A.E.; Özcan, M. Evaluation of spatial and functional roughness parameters on air-abraded zirconia as a function of particle type and deposition pressure. J. Adhes. Dent. 2015, 17, 77–80. [Google Scholar] [CrossRef]
- Coskun, M.E.; Akar, T.; Tugut, F. Airborne-particle abrasion; searching the right parameter. J. Dent. Sci. 2018, 13, 293–300. [Google Scholar] [CrossRef]
- Czepułkowska, W.; Wołowiec-Korecka, E.; Klimek, L. The Condition of Ni-Cr Alloy Surface After Abrasive Blasting with Various Parameters. J. Mater. Eng. Perform. 2020, 29, 1439–1444. [Google Scholar] [CrossRef]
- Available online: https://www.iso.org/fr/standard/74591.html (accessed on 1 September 2025).
- Canabarro, A.; Figueiredo, F.; Paciornik, S.; De-Deus, G. Two- and three-dimensional profilometer assessments to determine titanium roughness. Scanning 2009, 31, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Adhitya, K.; Mustika, T.; Manawan, M.; Ulfah, I.M.; Hanafi, R.; Setyadi, I.; Suryadi; Hidayat, A.; Sah, J.; Wibisono, M.; et al. Optimizing surface properties in pure titanium for dental implants: A crystallographic analysis of sandblasting and acid-etching techniques. Powder Diffr. 2024, 39, 206–216. [Google Scholar] [CrossRef]
- Efron, B. Bootstrap Methods: Another Look at the Jackknife. Ann. Statist. 1979, 7, 1–26. [Google Scholar] [CrossRef]
- Efron, B. Better Bootstrap Confidence Intervals. J. Am. Stat. Assoc. 1987, 82, 171–185. [Google Scholar] [CrossRef]
- Available online: https://d2ykdomew87jzd.cloudfront.net/data-sheets/TI-6AL-4V-UNS-R56400.pdf (accessed on 1 September 2025).
- Available online: https://www.renfert.com/fr-fr/content/download/16902/file/216640.pdf (accessed on 1 September 2025).











| Grit | Load (N) | Table Speed (rpm) | Holder Speed (rpm) | Duration |
|---|---|---|---|---|
| 320 | 25 | 300 | 150 | 2 min30 |
| 800 | 20 | 300 | 150 | 2 min30 |
| 1200 | 15 | 200 | 150 | 5 min |
| D (µm) | P (bar) | N | Sa (µm) | Sal (µm) | Str | Sdq | Sdr (%) | Spd (10−3/µm2) | Spc (1/µm) | Sfd |
|---|---|---|---|---|---|---|---|---|---|---|
| Mean ± SE | ||||||||||
| 25 | 2 | 52 | 0.53 ± 0.01 | 3.07 ± 0.13 | 0.97 ± 0.01 | 1.21 ± 0.01 | 43.64 ± 0.30 | 53.98 ± 0.38 | 4.26 ± 0.08 | 2.886 ± 0.002 |
| 3 | 60 | 0.59 ± 0.01 | 4.08 ± 0.12 | 0.98 ± 0.01 | 1.25 ± 0.01 | 45.21 ± 0.27 | 45.85 ± 0.35 | 4.36 ± 0.08 | 2.878 ± 0.002 | |
| 4 | 53 | 0.64 ± 0.01 | 4.58 ± 0.13 | 0.95 ± 0.01 | 1.33 ± 0.01 | 48.90 ± 0.29 | 40.33 ± 0.37 | 4.72 ± 0.08 | 2.866 ± 0.002 | |
| 50 | 2 | 60 | 1.03 ± 0.01 | 6.68 ± 0.12 | 0.90 ± 0.01 | 1.74 ± 0.01 | 69.16 ± 0.27 | 27.24 ± 0.35 | 6.58 ± 0.08 | 2.816 ± 0.002 |
| 3 | 60 | 1.15 ± 0.01 | 8.16 ± 0.12 | 0.80 ± 0.01 | 1.82 ± 0.01 | 73.09 ± 0.27 | 24.30 ± 0.35 | 7.18 ± 0.08 | 2.800 ± 0.002 | |
| 4 | 60 | 1.21 ± 0.01 | 10.20 ± 0.12 | 0.85 ± 0.01 | 1.77 ± 0.01 | 70.42 ± 0.27 | 24.81 ± 0.35 | 6.95 ± 0.08 | 2.798 ± 0.002 | |
| 90 | 2 | 60 | 1.28 ± 0.01 | 9.81 ± 0.12 | 0.84 ± 0.01 | 1.85 ± 0.01 | 74.78 ± 0.27 | 25.29 ± 0.35 | 7.33 ± 0.08 | 2.798 ± 0.002 |
| 3 | 59 | 1.49 ± 0.01 | 11.57 ± 0.12 | 0.88 ± 0.01 | 1.96 ± 0.01 | 79.21 ± 0.28 | 21.08 ± 0.35 | 8.19 ± 0.08 | 2.770 ± 0.002 | |
| 4 | 60 | 1.60 ± 0.01 | 13.02 ± 0.12 | 0.90 ± 0.01 | 1.99 ± 0.01 | 80.07 ± 0.27 | 19.19 ± 0.35 | 8.46 ± 0.08 | 2.758 ± 0.002 | |
| 125 | 2 | 60 | 1.90 ± 0.01 | 11.94 ± 0.12 | 0.92 ± 0.01 | 2.34 ± 0.01 | 89.68 ± 0.27 | 15.42 ± 0.35 | 9.61 ± 0.08 | 2.738 ± 0.002 |
| 3 | 60 | 2.19 ± 0.01 | 14.44 ± 0.12 | 0.92 ± 0.01 | 2.33 ± 0.01 | 93.08 ± 0.27 | 13.40 ± 0.35 | 10.42 ± 0.08 | 2.713 ± 0.002 | |
| 4 | 60 | 2.44 ± 0.01 | 15.43 ± 0.12 | 0.92 ± 0.01 | 2.39 ± 0.01 | 94.28 ± 0.27 | 10.86 ± 0.35 | 11.32 ± 0.08 | 2.685 ± 0.002 | |
| 250 | 2 | 60 | 3.17 ± 0.01 | 18.89 ± 0.12 | 0.92 ± 0.01 | 2.63 ± 0.01 | 98.67 ± 0.27 | 6.51 ± 0.35 | 14.66 ± 0.08 | 2.620 ± 0.002 |
| 3 | 60 | 3.65 ± 0.01 | 21.25 ± 0.12 | 0.92 ± 0.01 | 2.79 ± 0.01 | 106.32 ± 0.27 | 5.73 ± 0.35 | 16.09 ± 0.08 | 2.605 ± 0.002 | |
| 4 | 60 | 4.22 ± 0.01 | 24.63 ± 0.12 | 0.90 ± 0.01 | 3.14 ± 0.01 | 125.87 ± 0.27 | 6.28 ± 0.35 | 18.30 ± 0.08 | 2.606 ± 0.002 | |
| Value | SE | p-Value | Significance | |
|---|---|---|---|---|
| a | 0.383 | 0.029 | <10−4 | High |
| b | 0.0070 | 0.0002 | <10−4 | High |
| c | −0.011 | 0.009 | 0.23 | Null |
| d | 0.0021 | 7 × 10−5 | <10−4 | High |
| a | b (×10−3) | d (×10−3) | R2 | |
|---|---|---|---|---|
| Mean [95% CI] | ||||
| Sa | 0.38 [0.32 0.44] | 5.40 [5.38 5.42] | 2.10 [1.99 2.27] | 0.992 [0.991 0.994] |
| Sal | 3.89 [2.78 4.94] | 33 [11 56] | 13 [6 20] | 0.967 [0.944 0.987] |
| Str | - | - | - | - |
| Sdq | 1.33 [1.18 1.47] | 3.80 [0.60 6.70] | 0.90 [−0.10 1.90] | 0.927 [0.875 0.970] |
| Sdr | 52.08 [43.94 59.41] | 0.12 [−0.04 0.27] | 45.10 [6.50 94.80] | 0.876 [0.778 0.952] |
| Spd | 0.039 [0.033 0.046] | −0.10 [−0.20 0.01] | 0.01 [−0.05 0.03] | 0.767 [0.557 0.921] |
| Spc | 3.70 [3.17 4.27] | 30.30 [15.10 45.00] | 6.90 [2.30 11.90] | 0.985 [0.972 0.994] |
| Sfd | 2.87 [2.85 2.89] | −0.9 [−1.2 −0.5] | −0.08 [−0.20 0.02] | 0.952 [0.908 0.979] |
| Value | SD | 95% CI | |
|---|---|---|---|
| a | 1.40 × 10−5 | 5.70 × 10−3 | [−12.5 × 10−3 12.5 × 10−3] |
| b | 9.39 × 10−3 | 1.02 × 10−4 | [9.16 × 10−3 9.61 × 10−3] |
| d | 1.64 × 10−3 | 3.10 × 10−5 | [1.57 × 10−3 1.70 × 10−3] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bigerelle, M.; Chevallier, E.; Lemesle, J.; Deltombe, R.; Robache, F.; Vayron, R.; Zubchuk, N.; Proriol-Serre, I.; Benayoun, S.; Anselme, K. Determining Relevant 3D Roughness Parameters for Sandblasted Surfaces: A Methodological Approach. Machines 2025, 13, 1122. https://doi.org/10.3390/machines13121122
Bigerelle M, Chevallier E, Lemesle J, Deltombe R, Robache F, Vayron R, Zubchuk N, Proriol-Serre I, Benayoun S, Anselme K. Determining Relevant 3D Roughness Parameters for Sandblasted Surfaces: A Methodological Approach. Machines. 2025; 13(12):1122. https://doi.org/10.3390/machines13121122
Chicago/Turabian StyleBigerelle, Maxence, Eddy Chevallier, Julie Lemesle, Raphael Deltombe, Frederic Robache, Romain Vayron, Nadiia Zubchuk, Ingrid Proriol-Serre, Stephane Benayoun, and Karine Anselme. 2025. "Determining Relevant 3D Roughness Parameters for Sandblasted Surfaces: A Methodological Approach" Machines 13, no. 12: 1122. https://doi.org/10.3390/machines13121122
APA StyleBigerelle, M., Chevallier, E., Lemesle, J., Deltombe, R., Robache, F., Vayron, R., Zubchuk, N., Proriol-Serre, I., Benayoun, S., & Anselme, K. (2025). Determining Relevant 3D Roughness Parameters for Sandblasted Surfaces: A Methodological Approach. Machines, 13(12), 1122. https://doi.org/10.3390/machines13121122

