Towards Sustainable Manufacturing: Particle Emissions in Milling Post-Processing of 3D-Printed Titanium Alloy
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Production and Characteristics
2.2. Machining
2.3. Particulate Matter Measurement
2.3.1. Measurement Equipment and Position
2.3.2. Measurement Time
2.4. Experiment Design
3. Results
3.1. Stage 1: Statistical Effects of Cutting Speed and Fluids
3.2. Stage 2: Analysis of Door Opening Time
3.2.1. Scenario 1: To = 0 and Tm = t
3.2.2. Scenario 2: To = Tm = t
4. Discussion
5. Conclusions
- Statistical analyses indicated that cutting fluids significantly affect particle emissions, contributing to the majority of the variation in particle concentration.
- The effect of cutting fluid on the particle concentrations shows different patterns depending on the particle size.
- The particle concentration peak is observed at various time intervals subsequent to the machining process. For example, flood exhibited a peak immediately following machining, whereas MQL exhibited it at varying times based on the particle size.
- MQL results in a higher particle concentration and higher sizes. For example, the variation in the concentration peaks between the MQL and flood increases significantly, from 8.18% at a particle size of 0.3 µm to 538.22% at 10 µm, suggesting that MQL produces higher peak concentrations and larger particles.
- When MQL is employed, the operator needs to wait longer before interacting with the machine, with the standby time being ~328% greater than that of the flood system.
- The findings of this work provide insights into manufacturing sustainability by addressing scenarios and cooling strategies that help minimize operator waiting time, reduce particle emissions, and reduce or avoid exposure, which in turn enhances worker safety and health.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cozzolino, E.; Astarita, A. Wet and Dry Turning of Ti6Al4V EBM Parts: Implications on the Life Cycle Assessment and Surface Roughness. Mater. Manuf. Process. 2025, 40, 1621–1633. [Google Scholar] [CrossRef]
- Fayazfar, H.; Sharifi, J.; Keshavarz, M.K.; Ansari, M. An Overview of Surface Roughness Enhancement of Additively Manufactured Metal Parts: A Path towards Removing the Post-Print Bottleneck for Complex Geometries. Int. J. Adv. Manuf. Technol. 2023, 125, 1061–1113. [Google Scholar] [CrossRef]
- Milton, S.; Rigo, O.; LeCorre, S.; Morandeau, A.; Siriki, R.; Bocher, P.; Leroy, R. Microstructure Effects on the Machinability Behaviour of Ti6Al4V Produced by Selective Laser Melting and Electron Beam Melting Process. Mater. Sci. Eng. A 2021, 823, 141773. [Google Scholar] [CrossRef]
- Syrlybayev, D.; Seisekulova, A.; Talamona, D.; Perveen, A. The Post-Processing of Additive Manufactured Polymeric and Metallic Parts. J. Manuf. Mater. Process. 2022, 6, 116. [Google Scholar] [CrossRef]
- Gunaydin, K.; Türkmen, H.S.; Airoldi, A.; Grasso, M.; Sala, G.; Grande, A.M. Compression Behavior of EBM Printed Auxetic Chiral Structures. Materials 2022, 15, 1520. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Cadena, A.; Hangen, U.; Roa Rovira, J.J. Post-Processing of AM-EBM Ti6Al4V for Biomedical Applications: Evolution of Mechanical Properties as a Function of Surface Roughness. Metals 2024, 14, 1423. [Google Scholar] [CrossRef]
- Cozzolino, E.; Franchitti, S.; Borrelli, R.; Pirozzi, C.; Astarita, A. Energy Consumption Assessment in Manufacturing Ti6Al4V Electron Beam Melted Parts Post-Processed by Machining. Int. J. Adv. Manuf. Technol. 2023, 125, 1289–1303. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Z.; Wang, B.; Song, Q.; Cai, Y.; Khan, A.M.; Wan, Y.; Ren, X. A Comprehensive Review of Generating, Monitoring, Evaluating, and Controlling Particle Emissions during Machining Process. J. Manuf. Syst. 2023, 70, 395–416. [Google Scholar] [CrossRef]
- Ullah, I.; Akinlabi, E.T.; Kouam, J.; Songmene, V. A Comprehensive Experimental Investigation on the Correlation between Chip Formation, Machined Surface Integrity, and Particle Emissions during High-Speed Milling of TC4 Titanium Alloy. Int. J. Adv. Manuf. Technol. 2025, 136, 3285–3301. [Google Scholar] [CrossRef]
- Rodriguez, I.; Arrazola, P.J.; Pušavec, F. The Impact of Airborne Emissions from Coolants and Lubricants on Machining Costs. CIRP Ann. 2024, 73, 77–80. [Google Scholar] [CrossRef]
- Su, Y.; Lu, Q.; Yu, T.; Liu, Z.; Zhang, C. Machining and Environmental Effects of Electrostatic Atomization Lubrication in Milling Operation. Int. J. Adv. Manuf. Technol. 2019, 104, 2773–2782. [Google Scholar] [CrossRef]
- Khettabi, R.; Songmene, V.; Masounave, J. Effect of Tool Lead Angle and Chip Formation Mode on Dust Emission in Dry Cutting. J. Mater. Process. Technol. 2007, 194, 100–109. [Google Scholar] [CrossRef]
- Kasim, M.S.; Husshini, N.H.N.; Hafiz, M.S.A.; Mohamad, W.N.F.; Izamshah, R.; Ghani, J.A.; Haron, C.H.C. Particulate Matter–Monitoring during End Milling under Different Cooling-Lubrication Strategies. J. Appl. Sci. Eng. 2021, 24, 891–900. [Google Scholar]
- Yadav, S.P.; Pawade, R.S. Manufacturing Methods Induced Property Variations in Ti6Al4V Using High-Speed Machining and Additive Manufacturing (AM). Metals 2023, 13, 287. [Google Scholar] [CrossRef]
- Dabwan, A.; Anwar, S.; Al-Samhan, A.M.; Alqahtani, K.N.; Nasr, M.M.; Kaid, H.; Ameen, W. CNC Turning of an Additively Manufactured Complex Profile Ti6Al4V Component Considering the Effect of Layer Orientations. Processes 2023, 11, 1031. [Google Scholar] [CrossRef]
- Wang, F.; Li, Z.; Wang, X.; Yang, Y. A Prediction Model of Emission Characteristics of Oil Particles Induced by Milling Process: Emission Rate and Size Distribution. Indoor Built Environ. 2022, 31, 1892–1906. [Google Scholar] [CrossRef]
- Ameen, W.; Al-Ahmari, A.; Mohammed, M.K. Self-Supporting Overhang Structures Produced by Additive Manufacturing through Electron Beam Melting. Int. J. Adv. Manuf. Technol. 2019, 104, 2215–2232. [Google Scholar] [CrossRef]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, S.-H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2: Air Pollution and Organ Systems. Chest 2019, 155, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Metalworking Fluids—Metalworking Fluids: Safety and Health Best Practices Manual|Occupational Safety and Health Administration. Available online: https://www.osha.gov/metalworking-fluids/manual#e (accessed on 9 November 2025).
- Khan, A.M.; Rahatuzzaman, R.M.D.; Umayar, A.; Muhammad, J.; Asad, A.M.; Zhao, G.; Abellán-Nebot, J.V. The Recent Advancements in Minimum Quantity Lubrication (MQL) and Its Application in Mechanical Machining—A State-of-the-Art Review. Lubricants 2025, 13, 401. [Google Scholar] [CrossRef]
- Chauhan, B.V.S.; Corada, K.; Young, C.; Smallbone, K.L.; Wyche, K.P. Review on Sampling Methods and Health Impacts of Fine (PM2.5, ≤2.5 µm) and Ultrafine (UFP, PM0.1, ≤0.1 µm) Particles. Atmosphere 2024, 15, 572. [Google Scholar] [CrossRef]
- Garcia, A.; Santa-Helena, E.; De Falco, A.; de Paula Ribeiro, J.; Gioda, A.; Gioda, C.R. Toxicological Effects of Fine Particulate Matter (PM2.5): Health Risks and Associated Systemic Injuries—Systematic Review. Water Air Soil Pollut. 2023, 234, 346. [Google Scholar] [CrossRef] [PubMed]
- Particulate Matter (PM) Basics|US EPA. Available online: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics (accessed on 9 November 2025).
- Schraufnagel, D.E. The Health Effects of Ultrafine Particles. Exp. Mol. Med. 2020, 52, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, S.H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A.; et al. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 1: The Damaging Effects of Air Pollution. Chest 2019, 155, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Xu, T.; Sang, N.; Yue, H.; Chen, Y.; Jiang, T.; Jiang, T.; Yin, D. Mixed Metal Components in PM2.5 Contribute to Chemokine Receptor CCR5-Mediated Neuroinflammation and Neuropathological Changes in the Mouse Olfactory Bulb. Environ. Sci. Technol. 2024, 58, 4914–4925. [Google Scholar] [CrossRef]
- NAAQS Table|US EPA. Available online: https://www.epa.gov/criteria-air-pollutants/naaqs-table (accessed on 9 November 2025).







| Element | Ti | Al | V | F | K |
|---|---|---|---|---|---|
| Wt.% | 88.24 | 7.02 | 4.28 | 0.34 | 0.11 |
| Variable | Level 1 | Level 2 | Level 3 |
|---|---|---|---|
| Cutting speed (S), m/min | 40 | 60 | 80 |
| Cutting fluid | Flood | MQL | - |
| (a) | Source | DF | Seq SS | Contribution | Adj SS | Adj MS | F-Value | p-Value |
| Model | 3 | 39,861.6 | 99.57% | 39,861.6 | 13,287.2 | 156 | 0.006 | |
| Linear | 3 | 39,861.6 | 99.57% | 39,861.6 | 13,287.2 | 156 | 0.006 | |
| Speed | 2 | 109.1 | 0.27% | 109.1 | 54.5 | 0.64 | 0.61 | |
| Fluid | 1 | 39,752.5 | 99.30% | 39,752.5 | 39,752.5 | 466.73 | 0.002 | |
| Error | 2 | 170.3 | 0.43% | 170.3 | 85.2 | |||
| Total | 5 | 40,031.9 | 100.00% | |||||
| (b) | Source | DF | Seq SS | Contribution | Adj SS | Adj MS | F-Value | p-Value |
| Model | 3 | 21,323.3 | 97.92% | 21,323.3 | 7107.8 | 31.45 | 0.031 | |
| Linear | 3 | 21,323.3 | 97.92% | 21,323.3 | 7107.8 | 31.45 | 0.031 | |
| Speed | 2 | 381.5 | 1.75% | 381.5 | 190.7 | 0.84 | 0.542 | |
| Fluid | 1 | 20,941.8 | 96.17% | 20,941.8 | 20,941.8 | 92.66 | 0.011 | |
| Error | 2 | 452 | 2.08% | 452 | 226 | |||
| Total | 5 | 21,775.3 | 100.00% | |||||
| (c) | Source | DF | Seq SS | Contribution | Adj SS | Adj MS | F-Value | p-Value |
| Model | 3 | 6322.64 | 99.63% | 6322.64 | 2107.55 | 177.57 | 0.006 | |
| Linear | 3 | 6322.64 | 99.63% | 6322.64 | 2107.55 | 177.57 | 0.006 | |
| Speed | 2 | 0.15 | 0.00% | 0.15 | 0.07 | 0.01 | 0.994 | |
| Fluid | 1 | 6322.5 | 99.62% | 6322.5 | 6322.5 | 532.69 | 0.002 | |
| Error | 2 | 23.74 | 0.37% | 23.74 | 11.87 | |||
| Total | 5 | 6346.38 | 100.00% | |||||
| (d) | Source | DF | Seq SS | Contribution | Adj SS | Adj MS | F-Value | p-Value |
| Model | 3 | 0.020107 | 90.96% | 0.020107 | 0.006702 | 6.71 | 0.132 | |
| Linear | 3 | 0.020107 | 90.96% | 0.020107 | 0.006702 | 6.71 | 0.132 | |
| Speed | 2 | 0.004197 | 18.98% | 0.004197 | 0.002098 | 2.1 | 0.323 | |
| Fluid | 1 | 0.01591 | 71.98% | 0.01591 | 0.01591 | 15.92 | 0.057 | |
| Error | 2 | 0.001998 | 9.04% | 0.001998 | 0.000999 | |||
| Total | 5 | 0.022105 | 100.00% | |||||
| (e) | Source | DF | Seq SS | Contribution | Adj SS | Adj MS | F-Value | p-Value |
| Model | 1 | 15.587 | 93.88% | 15.587 | 15.5872 | 61.37 | 0.001 | |
| Linear | 1 | 15.587 | 93.88% | 15.587 | 15.5872 | 61.37 | 0.001 | |
| Fluid | 1 | 15.587 | 93.88% | 15.587 | 15.5872 | 61.37 | 0.001 | |
| Error | 4 | 1.016 | 6.12% | 1.016 | 0.254 | |||
| Total | 5 | 16.603 | 100.00% | |||||
| (f) | Response | 0.3 µm | 0.5 µm | 2.5 µm | 5 µm | 10 µm | ||
| R2 (%) | 99.57 | 97.92 | 99.63 | 90.96 | 93.88 | |||
| Scenario | Fluid | Particle Concentration (Particles/cm3) | |||||
|---|---|---|---|---|---|---|---|
| 0.3 µm | 0.5 µm | 1 µm | 2.5 µm | 5 µm | 10 µm | ||
| 1 | Flood | 187.694 | 187.403 | 76.290 | 85.722 | 1.371 | 2.438 |
| MQL | 184.854 | 121.050 | 33.799 | 16.647 | 0.209 | 0.382 | |
| Difference (%) | 1.54 | 54.81 | 125.72 | 414.94 | 555.98 | 538.22 | |
| 2 | Flood | 199.973 | 189.462 | 86.636 | 95.079 | 1.481 | 2.438 |
| MQL | 184.854 | 121.050 | 33.799 | 16.647 | 0.209 | 0.382 | |
| Difference (%) | 8.18 | 56.52 | 156.33 | 471.15 | 608.61 | 538.22 | |
| Scenario | Fluid | To (min.) | Tm (min.) | Particle Concentration (Particles/cm3) | |||||
|---|---|---|---|---|---|---|---|---|---|
| 0.3 µm | 0.5 µm | 1 µm | 2.5 µm | 5 µm | 10 µm | ||||
| 1 | Flood | 0 | 7 | 8.8321 | 3.7542 | 0.9640 | 0.2447 | 0.0132 | 0.0090 |
| MQL | 0 | 30 | 15.7638 | 8.3146 | 2.2823 | 0.5291 | 0.0180 | 0.0127 | |
| 2 | Flood | 7 | 7 | 9.1229 | 4.5599 | 1.3231 | 0.2664 | 0.0079 | 0.0085 |
| MQL | 30 | 30 | 38.5371 | 21.0784 | 5.2659 | 1.2246 | 0.0376 | 0.0217 | |
| Reference levels | 7.2893 | 3.5085 | 0.8656 | 0.1875 | 0.0051 | 0.0049 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, F.M.; Saleh, M.; Abdelgawad, A.E.; Almuhaidib, I.A.; Alessa, F. Towards Sustainable Manufacturing: Particle Emissions in Milling Post-Processing of 3D-Printed Titanium Alloy. Machines 2025, 13, 1051. https://doi.org/10.3390/machines13111051
Alqahtani FM, Saleh M, Abdelgawad AE, Almuhaidib IA, Alessa F. Towards Sustainable Manufacturing: Particle Emissions in Milling Post-Processing of 3D-Printed Titanium Alloy. Machines. 2025; 13(11):1051. https://doi.org/10.3390/machines13111051
Chicago/Turabian StyleAlqahtani, Fahad M., Mustafa Saleh, Abdelaty E. Abdelgawad, Ibrahim A. Almuhaidib, and Faisal Alessa. 2025. "Towards Sustainable Manufacturing: Particle Emissions in Milling Post-Processing of 3D-Printed Titanium Alloy" Machines 13, no. 11: 1051. https://doi.org/10.3390/machines13111051
APA StyleAlqahtani, F. M., Saleh, M., Abdelgawad, A. E., Almuhaidib, I. A., & Alessa, F. (2025). Towards Sustainable Manufacturing: Particle Emissions in Milling Post-Processing of 3D-Printed Titanium Alloy. Machines, 13(11), 1051. https://doi.org/10.3390/machines13111051

