Evaluation of Operational Energy Efficiency for Bridge Cranes Based on an Improved Multi-Strategy Fusion RRT Algorithm
Abstract
1. Introduction
- (1)
- By integrating multiple strategies, the proposed algorithm achieves superior path selection, higher path quality, and lower path cost in path planning.
- (2)
- A comparison from the perspectives of operational efficiency and energy consumption verifies the superiority of the proposed algorithm.
- (3)
- A comparative analysis of the three technical pathways was conducted using an energy efficiency ratio metric. The results indicate that each pathway excels in different performance dimensions, making them suitable for specific application scenarios.
2. Analysis of Path Planning for Bridge Cranes
2.1. Working Features of Overhead Bridge Cranes
2.2. Path Explanation
2.3. Energy Efficiency Research
2.3.1. Manual Operation
2.3.2. Traditional RRT Algorithm
- (1)
- Randomly generating a node;
- (2)
- Finding the nearest point in the tree to the random node and connecting them;
- (3)
- Generating a new node along the connecting line based on a preset step size;
- (4)
- Inserting the generated node into the tree if it meets the requirements.
2.3.3. Improved RRT Algorithm
Focused Sampling
Reconnection Strategy
Segment Sampling
Probability Control
2.4. Bezier Curve-Based Path Smoothing
2.5. Energy Consumption Analysis of Bridge Cranes
3. Experimental Results and Analysis
3.1. Experimental Environment Configuration
3.2. Simulation Experiment
3.3. Ablation Experiment
3.4. Experimental Results
4. Conclusions
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RRT | Rapidly exploring Random Tree |
TEC | Total Energy Consumption |
References
- Gasparetto, A.; Boscariol, P.; Lanzutti, A.; Vidoni, R. Path Planning and Trajectory Planning Algorithms: A General Overview. In Motion and Operation Planning of Robotic Systems. Mechanisms and Machine Science; Carbone, G., Gomez-Bravo, F., Eds.; Springer: Cham, Switzerland, 2015; Volume 29, pp. 3–17. [Google Scholar]
- Huang, J.; Hu, P.; Wu, K.; Zeng, M. Optimal time-jerk trajectory planning for industrial robots. Mech. Mach. Theory 2018, 121, 530–544. [Google Scholar] [CrossRef]
- Nadir, B.; Mohammed, O.; Minh-Tuan, N.; Abderrezak, S. Optimal trajectory generation method to find a smooth robot joint trajectory based on multiquadric radial basis functions. Int. J. Adv. Manuf. Technol. 2022, 120, 297–312. [Google Scholar] [CrossRef]
- Abu-Dakka, F.J.; Assad, I.F.; Alkhdour, R.M.; Abderahim, M. Statistical evaluation of an evolutionary algorithm for minimum time trajectory planning problem for industrial robots. Int. J. Adv. Manuf. Technol. 2017, 89, 389–406. [Google Scholar] [CrossRef]
- Gasparetto, A.; Boscariol, P.; Lanzutti, A.; Vidoni, R. Trajectory planning in robotics. Math. Comput. Sci. 2012, 6, 269–279. [Google Scholar] [CrossRef]
- Yang, L.; Qi, J.; Song, D.; Xiao, J.; Han, J.; Xia, Y. Survey of robot 3D path planning algorithms. J. Control Sci. Eng. 2016, 2016, 7426913. [Google Scholar] [CrossRef]
- Li, D.; Xie, T.; Li, G.; Yao, J.; Hu, S. Adaptive coupling tracking control strategy for double-pendulum bridge crane with load hoisting/lowering. Nonlinear Dyn 2024, 112, 8261–8280. [Google Scholar] [CrossRef]
- Li, G. Key Characteristics of Intelligent Crane and Overall Architecture of Control System. J. Mech. Eng. 2020, 56, 254–268. [Google Scholar]
- LaValle, S.M. Rapidly—Exploring Random Trees: A New Tool for Path Planning; Iowa State University: Ames, IA, USA, 1998. [Google Scholar]
- Wang, P.; Pan, S.; Wei, B.; Gao, W.; Hu, P. Narrow Spatial Path Planning Based on RSS_GN RRT Algorithm. J. Electron. Meas. Instrum. 2024, 38, 73–74. [Google Scholar]
- Wang, X.; Zhu, Q.; Zhu, Y. Survey of Path Planning Algorithms for 2D Mobile Robots. Comput. Eng. Appl. 2023, 59, 51–53. [Google Scholar]
- Wu, X.; Li, Y.; Zang, T.; Meng, Z.; Chen, J.; Wang, C. Fusion Path Planning of Mobile Robot Based on Voronoi Framework. J. Mech. Eng. 2025, 61, 165–177. [Google Scholar]
- Chen, X.; Zhao, M.; Yin, L. Dynamic Path Planning of the UAV Avoiding Static and Moving Obstacles. J. Intell. Robot. Syst. 2020, 99, 909–931. [Google Scholar] [CrossRef]
- Ge, Q.; Li, A.; Li, S.; Du, H.; Huang, X.; Niu, C. Improved bidirectional RRT* path planning method for smart vehicle. Math. Probl. Eng. 2021, 2021, 6669728. [Google Scholar] [CrossRef]
- Scrucca, L. GA: A package for genetic algorithms in R. J. Stat. Softw. 2013, 53, 1–37. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, S.; Hu, X. Cooperative Path Planning of UAVs & UGVs for a Persistent Surveillance Task in Urban Environments. IEEE Internet Things J. 2021, 8, 4906–4919. [Google Scholar]
- Meng, Y.; Zhang, Z.; Wu, L.; Liu, G.; Xu, S. Path Planning Algorithm for RRT* Manipulator Guided by Target Region. Comput. Sci. Explor. 2024, 18, 2408–2409. [Google Scholar]
- Wang, H.; Xiang, G.; Zhu, Y.; Dian, S. Obstacle Avoidance Path Planning of Manipulator Based on PS—RRT Algorithm. Appl. Res. Comput. 2023, 40, 42–43. [Google Scholar]
- Du, C.; Gao, H.; Hou, Y.; Wang, Z. Greedy RRT Path Planning Algorithm Based on Bidirectional Expansion of the Same Root. Comput. Eng. Appl. 2023, 59, 312–318. [Google Scholar]
- Zhang, R.; Zhou, L.; Liu, Z. Dynamic Path Planning for Mobile Robots Based on RRT* and DWA Algorithms. J. Syst. Simul. 2024, 36, 957–968. [Google Scholar]
- Wan, N.; Hou, Y.; Liang, S.; Deng, Y.; Zeng, X. Obstacle Avoidance Path Planning of Robotic Arm Based on Improved RRT Algorithm. Mech. Sci. Technol. 2025, 1–10. [Google Scholar] [CrossRef]
- Lin, S.; Jin, H.; Han, Z.; Zhao, J. Research on Improved A* Path Planning Algorithm Under Stochastic Map. Manuf. Technol. Mach. Tools. pp. 1–10. Available online: http://kns.cnki.net/kcms/detail/11.3398.TH.20241018.1454.026.html (accessed on 21 October 2024).
- Wang, X.; Wei, J.; Zhou, X.; Xia, Z.; Gu, X. AEB—RRT*: An adaptive extension bidirectional RRT* algorithm. Auton. Robot. 2022, 46, 685–704. [Google Scholar] [CrossRef]
- Chen, T.; Cai, Y.; Chen, L.; Xu, X. Trajectory Planning Method for Emergency Rescue Vehicle Based on Fourth—Order Bezier Curve*. J. Mech. Eng. 2025, 61, 198–209. [Google Scholar]
- Wang, J.; Chi, W.; Li, C.; Wang, C.; Meng, M. Neural RRT*: Learning-based optimal path planning. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1748–1758. [Google Scholar] [CrossRef]
- Chai, Q.; Wang, Y. RJ-RRT: Improved RRT for Path Planning in Narrow Passages. Appl. Sci 2022, 12, 12033. [Google Scholar] [CrossRef]
- Chiang, H.T.L.; Hsu, J.; Fiser, M.; Tapia, L.; Faust, A. RL-RRT: Kinodynamic motion planning via learning reachability estimators from RL policies. IEEE Robot. Autom. Lett. 2019, 4, 4298–4305. [Google Scholar] [CrossRef]
- Wu, Z.; Meng, Z.; Zhao, W.; Wu, Z. Fast-RRT: A RRT-based optimal path finding method. Appl. Sci. 2021, 11, 11777. [Google Scholar] [CrossRef]
- Wen, H. Qian, Y. Lifting machinery; Machinery Industry Press: Beijing, China, 2021; pp. 35–45. [Google Scholar]
- Elhoseny, M.; Tharwat, A.; Hassanien, A.E. Bezier curve based path planning in a dynamic field using modified genetic algorithm. J. Comput. Sci. 2018, 25, 339–350. [Google Scholar] [CrossRef]
- Shi, Z.; Su, Y.; Bu, C.; Fan, X. Path Planning Algorithm for Mobile Robot Based on Improved A*. MCU Embed. Syst. Appl. 2020, 20, 13–15. [Google Scholar] [CrossRef]
- Xie, C.; Gao, S.; Sun, X. Path Planning Algorithm Based on Improved A* Algorithm and Bezier Curve Optimization. J. Chongqing Univ. Technol. (Nat. Sci. Ed.) 2022, 36, 182–183. [Google Scholar]
- Li, X.; Tong, Y.; Yuan, X. Energy-saving Design Principles and Applications of Lifting Machinery; China Standards Press: Beijing, China, 2023; pp. 28–49. [Google Scholar]
Energy Consumption Classification | Loss Types | Formulas | Notes |
---|---|---|---|
Hoisting Mechanism Energy Consumption (Lifting) | Kinetic Energy | The values of v (velocity) and m (mass) are given | |
Potential Energy | h are known | ||
Brake Loss | |||
Total Motor Loss | Stator Copper Loss, Rotor Copper Loss, Core Loss | ||
Hoisting Mechanism Energy Consumption (Lowering) | Kinetic Energy | ||
Potential Energy | |||
Total Motor Loss | Stator Copper Loss, Rotor Copper Loss, Core Loss | As specified in the Crane Mechanical Design Manual | |
Brake Loss | |||
Trolley Travel Energy Consumption | Kinetic Energy | ||
Travel Resistance | The rolling friction resistance is the dominant factor. | ||
Total Motor Loss | Stator Copper Loss, Rotor Copper Loss, Core Loss | ||
Brake Loss | |||
Bridge Travel Energy Consumption | Kinetic Energy | v are known | |
Travel Resistance | |||
Total Motor Loss | Stator Copper Loss, Rotor Copper Loss, Core Loss | ||
Brake Loss |
Technical Specifications Table | |||
---|---|---|---|
Lifting Capacity | 200/50 (t) | ||
Span | 34,000 (mm) | ||
Hoist Height | 22/24 (m) | ||
Speed | Hoist | Main Hook | 0.9 (r/min) |
auxiliary hook | 6.3 (r/min) | ||
Motion | trolley | 11.5 (r/min) | |
Crane bridge | 25.9 (r/min) | ||
Motor | Hoist | Main | YZR250M1-8 |
auxiliary | YZR280S-6 | ||
Motion | trolley | YZR160M1-6 | |
Crane bridge | YZR160M1-6 | ||
Mass | Bridge Girder | 115,789 (Kg) | |
Total Weight of Crane | 209,413 (Kg) |
Algorithm | Planning Time | Path Cost | Path Nodes | Node |
---|---|---|---|---|
Original RRT | 100.0000 | 88.6396 | 256 | 896 |
RRT_connect | 100.0000 | 79.6584 | 207 | 953 |
RRT* | 100.0000 | 80.5694 | 186 | 1659 |
Our method | 100.0000 | 72.6564 | 125 | 3942 |
Algorithm | Focus on the Sampling | Reconnection | Segment Sampling | Probability Control | Path Cost | Path Nodes | Node |
---|---|---|---|---|---|---|---|
RRT | − | − | − | − | 88.6396 | 256 | 896 |
RRT | + | − | − | − | 87.5872 | 228 | 1286 |
RRT | + | + | − | − | 84.3694 | 204 | 1895 |
RRT | + | + | + | − | 82.6849 | 184 | 2359 |
Our method | + | + | + | + | 72.6564 | 125 | 3942 |
Method | Time(s) | Energy Consumption (Kw) | ||||||
---|---|---|---|---|---|---|---|---|
Hoist | Trolley | Crane Bridge | Total Time | Hoist | Trolley | Crane Bridge | TEC | |
Path 1 | 266.63 | 46.93 | 20.85 | 334.41 | 58.6600 | 4.3766 | 9.6412 | 72.6778 |
Path 2 | 262.96 | 49.37 | 22.63 | 334.96 | 54.3257 | 5.3247 | 9.8982 | 69.5486 |
Path 3 | 233.33 | 43.59 | 18.69 | 295.61 | 53.2112 | 4.0526 | 8.5974 | 65.8612 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Wang, X.; Ji, Z.; Liu, W.; Fang, Y.; Hou, J.; Liu, X.; Wen, H. Evaluation of Operational Energy Efficiency for Bridge Cranes Based on an Improved Multi-Strategy Fusion RRT Algorithm. Machines 2025, 13, 924. https://doi.org/10.3390/machines13100924
Wang Q, Wang X, Ji Z, Liu W, Fang Y, Hou J, Liu X, Wen H. Evaluation of Operational Energy Efficiency for Bridge Cranes Based on an Improved Multi-Strategy Fusion RRT Algorithm. Machines. 2025; 13(10):924. https://doi.org/10.3390/machines13100924
Chicago/Turabian StyleWang, Quanwei, Xiaoyang Wang, Ziya Ji, Weili Liu, Yingying Fang, Jiayi Hou, Xuying Liu, and Hao Wen. 2025. "Evaluation of Operational Energy Efficiency for Bridge Cranes Based on an Improved Multi-Strategy Fusion RRT Algorithm" Machines 13, no. 10: 924. https://doi.org/10.3390/machines13100924
APA StyleWang, Q., Wang, X., Ji, Z., Liu, W., Fang, Y., Hou, J., Liu, X., & Wen, H. (2025). Evaluation of Operational Energy Efficiency for Bridge Cranes Based on an Improved Multi-Strategy Fusion RRT Algorithm. Machines, 13(10), 924. https://doi.org/10.3390/machines13100924