Analysis and Optimization of Multi-Physical Field Coupling in Boom Flow Channel of Excavator Multiway Valves
Abstract
:1. Introduction
2. Excavator Multiway Valve Model
2.1. Geometric Model
2.2. Geometric Model and Mesh Model
2.3. Multi-Physics Field Coupling Simulation Model
- (1)
- Flow field simulation settings
- (2)
- Temperature field simulation settings
- (3)
- Structural field simulation settings
- (4)
- Grid independence verification
3. Multi-Physics Field Coupling Simulation Result Analysis
4. Flow Channel Structural Optimization Design
4.1. Choosing Optimization Parameters
4.2. Orthogonal Experimental Design and Analysis
4.3. Multiway Valve Structural Parameter Optimization
5. Experimental Validation
5.1. Test Bench Construction
5.2. Experimental Results and Analysis
6. Conclusions
- (1)
- The distribution of pressure, velocity, and temperature in the flow field of the multiway valve and the force distribution and deformation of the structure field under the influence of the flow field and temperature field were analyzed by multi-physics coupling simulation. Among them, the fluid temperature was usually higher in areas with higher flow rates and lower in areas with lower flow rates, the maximum stress and deformation appeared at the flow channel in the oil inlet area, and the temperature at the flow channel orifice was higher.
- (2)
- The variation range of structural parameters was determined. Combined with the orthogonal test and the multi-physics simulation model, the variation rules of performance indexes such as oil inlet pressure difference, oil return pressure difference, temperature, maximum deformation, and maximum stress of different orthogonal test groups were revealed. The primary and secondary order of influence of key structural parameters on performance indexes was obtained by using range analysis.
- (3)
- Based on the analysis of orthogonal test data, the multi-parameter and multi-objective optimization was carried out with the pressure loss and maximum stress as the optimization objectives. After optimization, the pressure loss and maximum stress of the multiway valve were reduced by 9.0% and 40.7%, respectively. A test bench was set up to test the optimized boom-connected multiway valve. The error of the pressure difference between the inlet and outlet of the simulation model is 5.2% in the inlet and outlet of the oil inlet, and the outlet of the simulation model is 7.7%.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Min, C.; Li, H.; Gao, X.; Wang, K.; Xie, L. Numerical investigation of convective heat transfer enhancement by a combination of vortex generator and in-tube inserts. Int. Commun. Heat Mass Transf. 2021, 127, 105490. [Google Scholar] [CrossRef]
- Hu, B.; Zhu, H.; Ding, K.; Zhang, Y.; Yin, B. Numerical investigation of conjugate heat transfer of an underwater gate valve assembly. Appl. Ocean Res. 2016, 56, 1–11. [Google Scholar] [CrossRef]
- Okhotnikov, I.; Abuowda, K.; Noroozi, S.; Godfrey, P. Numerical and experimental investigation of the metering characteristic and pressure losses of the rotary tubular spool valve. Flow Meas. Instrum. 2020, 71, 101679. [Google Scholar] [CrossRef]
- Olivetti, M.; Monterosso, F.G.; Marinaro, G.; Frosina, E.; Mazzei, P. Valve geometry and flow optimization through an automated DOE approach. Fluids 2020, 5, 17. [Google Scholar] [CrossRef]
- Herakovič, N.; Duhovnik, J.; Šimic, M. CFD simulation of flow force reduction in hydraulic valves. Teh. Vjesn./Tech. Gaz. 2015, 22, 453–463. [Google Scholar] [CrossRef]
- Simic, M.; Herakovic, N. Reduction of the flow forces in a small hydraulic seat valve as alternative approach to improve the valve characteristics. Energy Convers. Manag. 2015, 89, 708–718. [Google Scholar] [CrossRef]
- Wu, J.; Chen, L.; Luo, Y.; Zeng, C.; Li, X.; Lu, F. Analysis of Flow Field of Channel and Structural Optimization for Speed Switching Slide Valve in a Hydraulic Excavator Based on CFD. Mach. Tool Hydraul. 2013, 41, 131–133. [Google Scholar]
- Yang, Q.; Wang, X.Z.; Liu, M.Y.; Hu, J.; Zhang, Z.G. Optimization of Valve Block Shape Using CFD. Appl. Mech. Mater. 2012, 190, 133–138. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Z.; Meng, D.; Liu, L.; Fang, Z. Multi-Physical Field Coupling Simulation and Experiments with Pulse Electrochemical Machining of Large Size TiAl Intermetallic Blade. Metals 2023, 13, 985. [Google Scholar] [CrossRef]
- Liu, J.; Yu, S.; Yang, S.; Zhang, Y.; Fan, X.; Gao, B. Numerical Studies on the Performance of the PCM Mesh-Finned Heat Sink Base on Thermal-Flow Multiphysics Coupling Simulation. Energies 2020, 13, 4658. [Google Scholar] [CrossRef]
- Li, Z.; Cao, B.; Dai, Y. Research on multi-physics coupling simulation for the pulse electrochemical machining of holes with tube electrodes. Micromachines 2021, 12, 950. [Google Scholar] [CrossRef]
- Wu, J.; Chen, J.; Cai, X.; Zou, C.; Yu, C.; Cui, Y.; Zhang, A.; Zhao, H. A review of molten salt reactor multi-physics coupling models and development prospects. Energies 2022, 15, 8296. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, W.; Zhu, X.; Zhang, L. Theoretical Model of Dynamic Bulk Modulus for Aerated Hydraulic Fluid. Chin. J. Mech. Eng. 2022, 35, 121. [Google Scholar] [CrossRef]
- Hong, C.; Qiao, S.; Shah, A.A. Influence of oil temperature on pressure distribution and flow force of valve core. Int. J. Hydromechatron. 2023, 6, 342–358. [Google Scholar] [CrossRef]
- Li, M.; Zheng, S.; Wei, M. Flow Loss Analysis and Structural Optimization of Multiway Valves for Integrated Thermal Management Systems in Electric Vehicles. Energies 2023, 16, 5040. [Google Scholar] [CrossRef]
- Xu, L.; Ma, H.; Ren, D. Numerical simulation for multi-way valves and fit clearance research based on heat–fluid–solid coupling. J. Eng. 2019, 2019, 247–252. [Google Scholar] [CrossRef]
- Peng, C.; Luo, Y.; Jin, Y. Thermal Fluid-Solid Coupling and Thermal Stress Analysis of Vacuum Valve Based on CFD. In Proceedings of the Seventh Asia International Symposium on Mechatronics: Volume I; Springer: Singapore, 2020. [Google Scholar]
- Kazama, T. Thermohydrodynamic lubrication model of a slipper in swashplate type axial piston machines-validation through experimental data. Int. J. Hydromechatron. 2018, 1, 259–271. [Google Scholar] [CrossRef]
- Tan, W.; Chen, Z.; Li, Z.; Yan, H. Thermal-Fluid-Solid Coupling Simulation and Oil Groove Structure Optimization of Wet Friction Clutch for High-Speed Helicopter. Machines 2023, 11, 296. [Google Scholar] [CrossRef]
- Tang, J.; Xie, W.; Wang, X.; Chen, C. Simulation and analysis of fluid–solid–thermal unidirectional coupling of near-space airship. Aerospace 2022, 9, 439. [Google Scholar] [CrossRef]
- Amirante, R.; Catalano, L.A.; Poloni, C.; Tamburrano, P. Fluid-dynamic design optimization of hydraulic proportional directional valves. Eng. Optim. 2014, 46, 1295–1314. [Google Scholar] [CrossRef]
- Shankar Bhattacharjee, K.; Kumar Singh, H.; Ray, T. Multi-objective optimization with multiple spatially distributed surrogates. J. Mech. Des. 2016, 138, 091401. [Google Scholar] [CrossRef]
- Zong, C.; Shi, M.; Li, Q.; Liu, F.; Zhou, W.; Song, X. Design optimization of a nuclear main steam safety valve based on an E-AHF ensemble surrogate model. Nucl. Eng. Technol. 2022, 54, 4181–4194. [Google Scholar] [CrossRef]
- Geneid, A.A.; Atia, M.R.A.; Badawy, A. Multi-objective optimization of vertical-axis wind turbine’s blade structure using genetic algorithm. J. Eng. Appl. Sci. 2022, 69, 1–19. [Google Scholar] [CrossRef]
- Li, C.; Liu, X.; Wang, X.; Chen, J.; Wang, Y. Optimization of multi-way valve structure in digital hydraulic system of loader. Energies 2021, 14, 700. [Google Scholar] [CrossRef]
- Wang, S.; Ma, X.; Hu, Z.; Sun, S. Multi-Parameter Optimization of Heat Dissipation Structure of Double Disk Magnetic Coupler Based on Orthogonal Experimental Design. Energies 2022, 15, 8801. [Google Scholar] [CrossRef]
- Caixeta, P.R.; Marques, F.D. Multi-objective Optimization of an Aircraft Wing Design with Respect to Structural and Aeroelastic Characteristics using Neural Network Metamodel. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 1–11. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, Y.; Ai, C.; Yan, G.; Jiang, W. Multi-objective optimisation of K-shape notch multi-way spool valve using CFD analysis, discharge area parameter model, and NSGA-II algorithm. Eng. Appl. Comput. Fluid Mech. 2023, 17, 2242721. [Google Scholar] [CrossRef]
- Duan, B.; Luo, M.; Yuan, C.; Luo, X. Multi-objective hydraulic optimization and analysis in a minipump. Sci. Bull. 2015, 60, 1517–1526. [Google Scholar] [CrossRef]
- Corbera, S.; Olazagoitia, J.L.; Lozano, J.A. Multi-objective global optimization of a butterfly valve using genetic algorithms. ISA Trans. 2016, 63, 401–412. [Google Scholar] [CrossRef]
- Lu, Y. Handbook of Hydraulic Pneumatic Technology; China Machine Press: Beijing, China, 2004; pp. 352–353. [Google Scholar]
- Bakhshpoori, T.; Asadi Abadi, A. Orthogonal learning metaheuristics for structural optimization. Neural Comput. Appl. 2023, 35, 19497–19521. [Google Scholar] [CrossRef]
- Peng, H. Orthogonal experimental design and data analysis method. Metrol. Meas. Technol. 2009, 36, 39–40+42. [Google Scholar]
- Yang, X.L.; Xia, Y.X.; Huang, G. Numerical analysis and orthogonal optimization design of magnetic fluid reciprocating seals. J. Magn. Magn. Mater. 2024, 592, 171782. [Google Scholar] [CrossRef]
- Yang, G.; Qiao, J.; Song, Z.; Dai, J. The service life analysis of drilling pump valve. J. Vib. Shock 2010, 29, 58–61+237. [Google Scholar]
Calculation Domain | Inlet Velocity (m/s) | Turbulence Intensity (%) | Hydraulic Diameter (mm) | Outlet Back Pressure (bar) | Turbulence Intensity (%) | Hydraulic Diameter (mm) | Inlet Temperature (°C) | Outlet Temperature (°C) |
---|---|---|---|---|---|---|---|---|
intake area | 8.5 | 5 | 30 | 340 | 5 | 32 | 45 | 50 |
return area | 7.5 | 5 | 32 | 5 | 5 | 40 | 45 | 50 |
Number of Grids (Ten Thousand) | Inlet-Outlet Pressure Difference (bar) | Inlet-Outlet Pressure Difference Deviation (%) |
---|---|---|
679 | 15.47 | 0 |
747 | 15.56 | 0.59 |
820 | 15.57 | 0.65 |
Number of Grids (Ten Thousand) | Valve Body Maximum Temperature (°C) | Maximum Temperature Deviation (%) | Maximum Valve Body Deformation (mm) | Maximum Deformation Deviation (%) | Maximum Valve Body Stress (MPa) | Maximum Stress Deviation (%) |
---|---|---|---|---|---|---|
122 | 72.35 | 0 | 31.32 | 0 | 258.17 | 0 |
132 | 71.67 | 0.94 | 31.42 | 0.33 | 259.80 | 0.63 |
145 | 71.59 | 1.05 | 31.46 | 0.45 | 260.29 | 0.82 |
a (mm) | b (mm) | c (mm) | d (mm) | e (mm) | f (mm) |
---|---|---|---|---|---|
26 | 11 | 44 | 2 | 6.8 | 10 |
Level | a (mm) | b (mm) | c (mm) | d (mm) | e (mm) | f (mm) |
---|---|---|---|---|---|---|
1 | 26 | 11 | 44 | 2 | 6.8 | 10 |
2 | 27 | 12 | 44.5 | 3 | 7.1 | 11 |
3 | 28 | 13 | 45 | 4 | 7.3 | 12 |
4 | 29 | 14 | 45.5 | 5 | 7.5 | 13 |
5 | 30 | 15 | 46 | 6 | 7.8 | 14 |
Test Number | a (mm) | b (mm) | c (mm) | d (mm) | e (mm) | f (mm) | J ∆p1(bar) | K ∆p2(bar) | L (°C) | M (μm) | N (MPa) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 26 | 11 | 44 | 2 | 6.8 | 10 | 16.17 | 8.70 | 68.92 | 33.79 | 274.4 |
2 | 26 | 12 | 44.5 | 3 | 7.1 | 11 | 16.81 | 8.53 | 71.84 | 34.22 | 259.6 |
3 | 26 | 13 | 45 | 4 | 7.3 | 12 | 15.38 | 8.65 | 67.65 | 34.07 | 254.6 |
4 | 26 | 14 | 45.5 | 5 | 7.5 | 13 | 15.71 | 8.69 | 66.09 | 33.37 | 263.8 |
5 | 26 | 15 | 46 | 6 | 7.8 | 14 | 14.94 | 8.70 | 64.47 | 34.95 | 272.2 |
6 | 27 | 11 | 44.5 | 4 | 7.5 | 14 | 15.88 | 8.64 | 65.30 | 33.81 | 249.8 |
7 | 27 | 12 | 45 | 5 | 7.8 | 10 | 15.53 | 8.65 | 64.10 | 40.22 | 213.8 |
8 | 27 | 13 | 45.5 | 6 | 6.8 | 11 | 15.21 | 8.60 | 67.18 | 28.08 | 192.3 |
9 | 27 | 14 | 46 | 2 | 7.1 | 12 | 14.95 | 8.69 | 69.29 | 28.18 | 217.1 |
10 | 27 | 15 | 44 | 3 | 7.3 | 13 | 15.47 | 8.68 | 72.35 | 31.32 | 258.2 |
11 | 28 | 11 | 45 | 6 | 7.1 | 13 | 15.57 | 8.69 | 64.22 | 34.19 | 121.6 |
12 | 28 | 12 | 45.5 | 2 | 7.3 | 14 | 15.22 | 8.69 | 66.97 | 34.33 | 271.1 |
13 | 28 | 13 | 46 | 3 | 7.5 | 10 | 14.90 | 8.71 | 69.64 | 34.48 | 262.2 |
14 | 28 | 14 | 44 | 4 | 7.8 | 11 | 15.48 | 8.67 | 70.50 | 34.48 | 251.9 |
15 | 28 | 15 | 44.5 | 5 | 6.8 | 12 | 15.29 | 8.70 | 68.21 | 35.17 | 163.9 |
16 | 29 | 11 | 45.5 | 3 | 7.8 | 12 | 15.17 | 8.66 | 67.09 | 34.20 | 259.5 |
17 | 29 | 12 | 46 | 4 | 6.8 | 13 | 14.82 | 8.69 | 65.85 | 35.13 | 247.7 |
18 | 29 | 13 | 44 | 5 | 7.1 | 14 | 15.45 | 8.69 | 68.43 | 34.30 | 249.4 |
19 | 29 | 14 | 44.5 | 6 | 7.3 | 10 | 15.18 | 8.69 | 67.83 | 34.96 | 165.0 |
20 | 29 | 15 | 45 | 2 | 7.5 | 11 | 14.85 | 8.67 | 69.33 | 34.95 | 269.1 |
21 | 30 | 11 | 46 | 5 | 7.3 | 11 | 15.31 | 8.69 | 66.61 | 41.69 | 272.6 |
22 | 30 | 12 | 44 | 6 | 7.5 | 12 | 15.94 | 8.62 | 67.75 | 34.76 | 251.4 |
23 | 30 | 13 | 44.5 | 2 | 7.8 | 13 | 15.51 | 8.69 | 65.88 | 34.97 | 242.5 |
24 | 30 | 14 | 45 | 3 | 6.8 | 14 | 15.26 | 8.71 | 69.05 | 34.92 | 260.6 |
25 | 30 | 15 | 45.5 | 4 | 7.1 | 10 | 15.03 | 8.70 | 68.37 | 35.17 | 183.3 |
26 | 26 | 11 | 44 | 5 | 7.8 | 13 | 16.06 | 8.71 | 70.15 | 33.94 | 256.9 |
27 | 26 | 12 | 44.5 | 6 | 6.8 | 14 | 15.79 | 8.68 | 65.42 | 35.09 | 182.2 |
28 | 26 | 13 | 45 | 2 | 7.1 | 10 | 15.42 | 8.59 | 67.89 | 34.18 | 271.8 |
29 | 26 | 14 | 45.5 | 3 | 7.3 | 11 | 15.91 | 8.71 | 67.13 | 34.57 | 256.9 |
30 | 26 | 15 | 46 | 4 | 7.5 | 12 | 14.91 | 8.59 | 68.07 | 34.58 | 257.0 |
31 | 27 | 11 | 44.5 | 2 | 7.3 | 12 | 15.85 | 8.68 | 65.25 | 35.02 | 172.1 |
32 | 27 | 12 | 45 | 3 | 7.5 | 13 | 15.49 | 8.64 | 66.53 | 34.10 | 258.5 |
33 | 27 | 13 | 45.5 | 4 | 7.8 | 14 | 15.23 | 8.65 | 66.07 | 35.09 | 182.7 |
34 | 27 | 14 | 46 | 5 | 6.8 | 10 | 14.97 | 8.67 | 66.12 | 34.42 | 253.5 |
35 | 27 | 15 | 44 | 6 | 7.1 | 11 | 15.57 | 8.71 | 65.13 | 35.23 | 154.7 |
36 | 28 | 11 | 45 | 4 | 6.8 | 11 | 15.55 | 8.71 | 69.07 | 34.04 | 254.1 |
37 | 28 | 12 | 45.5 | 5 | 7.1 | 12 | 15.29 | 8.70 | 65.30 | 35.02 | 165.3 |
38 | 28 | 13 | 46 | 6 | 7.3 | 13 | 14.96 | 8.66 | 70.55 | 34.40 | 251.6 |
39 | 28 | 14 | 44 | 2 | 7.5 | 14 | 15.49 | 8.69 | 68.10 | 35.02 | 140.8 |
40 | 28 | 15 | 44.5 | 3 | 7.8 | 10 | 15.23 | 8.68 | 67.50 | 34.56 | 263.5 |
41 | 29 | 11 | 45.5 | 6 | 7.5 | 10 | 15.28 | 8.72 | 64.47 | 35.01 | 160.6 |
42 | 29 | 12 | 46 | 2 | 7.8 | 11 | 14.83 | 8.71 | 69.57 | 34.61 | 269.4 |
43 | 29 | 13 | 44 | 3 | 6.8 | 12 | 15.46 | 8.76 | 65.87 | 32.87 | 227.8 |
44 | 29 | 14 | 44.5 | 4 | 7.1 | 13 | 15.12 | 8.71 | 71.41 | 34.57 | 254.3 |
45 | 29 | 15 | 45 | 5 | 7.3 | 14 | 14.93 | 8.70 | 64.22 | 34.87 | 163.6 |
46 | 30 | 11 | 46 | 3 | 7.1 | 14 | 15.28 | 8.66 | 70.56 | 33.24 | 264.6 |
47 | 30 | 12 | 44 | 4 | 7.3 | 10 | 15.91 | 8.70 | 67.13 | 34.57 | 256.9 |
48 | 30 | 13 | 44.5 | 5 | 7.5 | 11 | 15.57 | 8.66 | 67.25 | 34.66 | 262.2 |
49 | 30 | 14 | 45 | 6 | 7.8 | 12 | 15.24 | 8.66 | 68.69 | 34.79 | 255.3 |
50 | 30 | 15 | 45.5 | 2 | 6.8 | 13 | 14.97 | 8.64 | 67.83 | 35.19 | 270.2 |
Range Analysis | a (mm) | b (mm) | c (mm) | d (mm) | e (mm) | f (mm) |
---|---|---|---|---|---|---|
ki1 | 15.71 | 15.61 | 15.70 | 15.33 | 15.35 | 15.36 |
ki2 | 15.42 | 15.56 | 15.62 | 15.50 | 15.45 | 15.51 |
ki3 | 15.30 | 15.31 | 15.32 | 15.33 | 15.41 | 15.35 |
ki4 | 15.11 | 15.33 | 15.30 | 15.41 | 15.40 | 15.37 |
ki5 | 15.40 | 15.12 | 14.99 | 15.37 | 15.32 | 15.35 |
Ri | 0.60 | 0.49 | 0.71 | 0.17 | 0.13 | 0.16 |
Group | Predicted Value | Artificial Value | Relative Error | |
---|---|---|---|---|
group 1 | pressure loss (bar) | 24.77 | 24.61 | 0.65% |
maximum contact stress (MPa) | 264.06 | 256.86 | 2.8% | |
group 2 | pressure loss(bar) | 24.18 | 23.94 | 1.0% |
maximum contact stress (MPa) | 254.32 | 264.60 | 3.8% |
Optimization Result | Pressure Loss (bar) | Maximum Stress (MPa) |
---|---|---|
before optimization | 24.87 | 274.4 |
post-optimization | 22.64 | 162.8 |
decrease specific gravity | 9.0% | 40.7% |
Serial Number | Test Item | Test Result | Simulation Result | Relative Error (%) |
---|---|---|---|---|
1 | Inlet and outlet pressure difference in oil inlet area | 15.05 bar | 14.27 bar | 5.2 |
2 | Inlet and outlet pressure difference in return area | 9.07 bar | 8.37 bar | 7.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Chen, N.; Yuan, X.; Zhang, Z.; Liu, X.; Ma, Z. Analysis and Optimization of Multi-Physical Field Coupling in Boom Flow Channel of Excavator Multiway Valves. Machines 2024, 12, 611. https://doi.org/10.3390/machines12090611
Zheng Z, Chen N, Yuan X, Zhang Z, Liu X, Ma Z. Analysis and Optimization of Multi-Physical Field Coupling in Boom Flow Channel of Excavator Multiway Valves. Machines. 2024; 12(9):611. https://doi.org/10.3390/machines12090611
Chicago/Turabian StyleZheng, Ze, Nuoyan Chen, Xiaoming Yuan, Zongjin Zhang, Xiaoping Liu, and Zhiao Ma. 2024. "Analysis and Optimization of Multi-Physical Field Coupling in Boom Flow Channel of Excavator Multiway Valves" Machines 12, no. 9: 611. https://doi.org/10.3390/machines12090611
APA StyleZheng, Z., Chen, N., Yuan, X., Zhang, Z., Liu, X., & Ma, Z. (2024). Analysis and Optimization of Multi-Physical Field Coupling in Boom Flow Channel of Excavator Multiway Valves. Machines, 12(9), 611. https://doi.org/10.3390/machines12090611