Experiment and Simulation of Liquid Film Flow Driving Abrasive Particle Dispersion on the Surface of a Rotating Disk
Abstract
:1. Introduction
2. Numerical Simulation
2.1. Computational Domain and Meshing
2.2. Mathematical Model
2.2.1. Multiphase Flow Model
2.2.2. Discrete Phase Model
2.2.3. Viscous Model
2.3. Boundary Conditions and Simulation Details
3. Experimental Setup and Procedure
4. Analysis Method and Simulation Validation
4.1. Uniformity Evaluation
4.2. Simulation Validation
5. Results and Discussion
5.1. Influence of Flow Rate
5.2. Influence of Rotational Speed
5.3. Influence of Viscosity
5.4. Uniformity under Different Operating Parameters
5.5. Orthogonal Simulation to Optimize Operating Parameters
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, B.; Zhou, K.; Guo, J.; Liu, Q.Y.; Wang, W.J. Influence of Grinding Parameters on Surface Temperature and Burn Behaviors of Grinding Rail. Tribol. Int. 2018, 122, 151–162. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, X.; Ding, W.; Wang, Y.; Fu, Y.; Zhao, Y.; Zhu, J. Grain Erosion Wear Properties and Grinding Performance of Porous Aggregated Cubic Boron Nitride Abrasive Wheels. Chin. J. Aeronaut. 2023, 36, 446–459. [Google Scholar] [CrossRef]
- He, Y.; Xiao, G.; Zhu, S.; Liu, G.; Liu, Z.; Deng, Z. Surface Formation in Laser-Assisted Grinding High-Strength Alloys. Int. J. Mach. Tools Manuf. 2023, 186, 104002. [Google Scholar] [CrossRef]
- Xiao, G.; Zhang, Y.; Zhu, B.; Gao, H.; Huang, Y.; Zhou, K. Wear Behavior of Alumina Abrasive Belt and Its Effect on Surface Integrity of Titanium Alloy during Conventional and Creep-Feed Grinding. Wear 2023, 514–515, 204581. [Google Scholar] [CrossRef]
- Zhao, Z.; Qian, N.; Ding, W.; Wang, Y.; Fu, Y. Profile Grinding of DZ125 Nickel-Based Superalloy: Grinding Heat, Temperature Field, and Surface Quality. J. Manuf. Process. 2020, 57, 10–22. [Google Scholar] [CrossRef]
- Dang, J.; Zang, H.; An, Q.; Ming, W.; Chen, M. Feasibility Study of Creep Feed Grinding of 300M Steel with Zirconium Corundum Wheel. Chin. J. Aeronaut. 2022, 35, 565–578. [Google Scholar] [CrossRef]
- Yin, Y.; Chen, M. Analysis of Grindability and Surface Integrity in Creep−Feed Grinding of High−Strength Steels. Materials 2024, 17, 1784. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.; Liu, K.; Tong, J.; Tang, X. Performance of the Internal-Cooling Grooved Grinding Wheel with Patterned Abrasives. Int. J. Adv. Manuf. Technol. 2020, 106, 1633–1644. [Google Scholar] [CrossRef]
- Herzenstiel, P.; Aurich, J.C. CBN-Grinding Wheel with a Defined Grain Pattern—Extensive Numerical and Experimental Studies. Mach. Sci. Technol. 2010, 14, 301–322. [Google Scholar] [CrossRef]
- Ding, W.; Dai, C.; Yu, T.; Xu, J.; Fu, Y. Grinding Performance of Textured Monolayer CBN Wheels: Undeformed Chip Thickness Nonuniformity Modeling and Ground Surface Topography Prediction. Int. J. Mach. Tools Manuf. 2017, 122, 66–80. [Google Scholar] [CrossRef]
- Denkena, B.; Grove, T.; Göttsching, T. Grinding with Patterned Grinding Wheels. CIRP J. Manuf. Sci. Technol. 2015, 8, 12–21. [Google Scholar] [CrossRef]
- Fang, C.; Zhao, Z.; Lu, L.; Lin, Y. Influence of Fixed Abrasive Configuration on the Polishing Process of Silicon Wafers. Int. J. Adv. Manuf. Technol. 2017, 88, 575–584. [Google Scholar] [CrossRef]
- Wen, D.; Qi, H.; Ma, L.; Lu, C.; Li, G. Kinematics and Trajectory Analysis of the Fixed Abrasive Lapping Process in Machining of Interdigitated Micro-Channels on Bipolar Plates. Precis. Eng. 2016, 44, 192–202. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, X.; Wen, D.; Li, S.; Wang, X.; Gan, L.; Rong, X. Improved Grinding Performance of SiC Using an Innovative Bionic Vein-like Structured Grinding Wheel Optimized by Hydrodynamics. J. Manuf. Process. 2023, 101, 195–207. [Google Scholar] [CrossRef]
- Sung, C.M. Brazed Diamond Tools by Infiltration 2000. U.S. Patent US006039641A, 21 March 2000. [Google Scholar]
- Zhu, Y.; Hou, Z.; Huang, Z.; Li, B.; Zhang, Z.; Xu, J.; Ding, W. Study on Morphology Reconstruction of SiC Ceramics Ground by Monolayer-Patterned Grinding Wheel Considering Strain Rate Effect. Int. J. Adv. Manuf. Technol. 2024, 130, 2675–2686. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, F.; Ni, Y.; Chen, F.; Yan, Z. Grinding of Alumina Ceramic with Microtextured Brazed Diamond End Grinding Wheels. Ceram. Int. 2020, 46, 19767–19784. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.H.; Chen, F.J.; Yu, J.W.; Wang, M. A Novel Orderly Arrangement Method Controlled by Magnetic Field for Diamond Abrasives of Grinding Wheel. Adv. Mater. Res. 2012, 497, 6–9. [Google Scholar] [CrossRef]
- González, M.; Rodríguez, A.; Pereira, O.; de Lacalle, L.N.L. Surface Roughness Evaluation When Brushing Heat-Resistant Alloy Components. Int. J. Adv. Manuf. Technol. 2024. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.; Tian, C.; Fu, S.; Rong, Y.; Wang, L. Digital Design and Performance Evaluation of Porous Metal-Bonded Grinding Wheels Based on Minimal Surface and 3D Printing. Mater. Des. 2021, 203, 109556. [Google Scholar] [CrossRef]
- Qiu, Y.; Huang, H. Research on the Fabrication and Grinding Performance of 3-Dimensional Controllable Abrasive Arrangement Wheels. Int. J. Adv. Manuf. Technol. 2019, 104, 1839–1853. [Google Scholar] [CrossRef]
- Li, M.; Huang, Y.; Wang, W.; Yan, S.; Liu, Y.; Zou, L. A Novel 3D Printed Compliant Ball-End Grinding Tool with Crystal Structure: Feasibility and Performance Analysis. Mater. Des. 2024, 237, 112591. [Google Scholar] [CrossRef]
- Aoune, A.; Ramshaw, C. Process Intensification: Heat and Mass Transfer Characteristics of Liquid Films on Rotating Discs. Int. J. Heat Mass Transf. 1999, 42, 2543–2556. [Google Scholar] [CrossRef]
- Wang, D.; Jin, H.; Ling, X.; Peng, H.; Yu, J.; Cui, Z. Regulation of Velocity Zoning Behaviour and Hydraulic Jump of Impinging Jet Flow on a Spinning Disk Reactor. Chem. Eng. J. 2020, 390, 124392. [Google Scholar] [CrossRef]
- Sharma, K.; Vijay, N.; Mabood, F.; Badruddin, I.A. Numerical Simulation of Heat and Mass Transfer in Magnetic Nanofluid Flow by a Rotating Disk with Variable Fluid Properties. Int. Commun. Heat Mass Transf. 2022, 133, 105977. [Google Scholar] [CrossRef]
- Leshev, I.; Peev, G. Film Flow on a Horizontal Rotating Disk. Chem. Eng. Process. Process Intensif. 2003, 42, 925–929. [Google Scholar] [CrossRef]
- Fluent, A.N. Eulerian Model Theory. In ANSYS Fluent Theory Guide; ANSYS Inc.: Canonsburg, PA, USA, 2020. [Google Scholar]
- Naeeni, S.K.; Pakzad, L. Droplet Size Distribution and Mixing Hydrodynamics in a Liquid–Liquid Stirred Tank by CFD Modeling. Int. J. Multiph. Flow 2019, 120, 103100. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. A Discrete Numerical Model for Granular Assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Morsi, S.A.; Alexander, A.J. An Investigation of Particle Trajectories in Two-Phase Flow Systems. J. Fluid Mech. 1972, 55, 193. [Google Scholar] [CrossRef]
- Soma, T.; Katayama, T.; Tanimoto, J.; Saito, Y.; Matsushita, Y.; Aoki, H.; Nakai, D.; Kitamura, G.; Miura, M.; Asakawa, T.; et al. Liquid Film Flow on a High Speed Rotary Bell-Cup Atomizer. Int. J. Multiph. Flow 2015, 70, 96–103. [Google Scholar] [CrossRef]
- Christiansen, J.E. Irrigation by Sprinkling; University of California, Agricultural Experiment Station: Berkeley, CA, USA, 1942. [Google Scholar]
- Chen, F.; Zhang, L.; Yin, S.; Huang, S.; Tang, Q. Study on Distribution Characteristics of Diamond Particles under High-Voltage Electrostatic Field. Int. J. Adv. Manuf. Technol. 2018, 96, 1393–1401. [Google Scholar] [CrossRef]
- González, M.; Rodríguez, A.; López-Saratxaga, U.; Pereira, O.; López De Lacalle, L.N. Adaptive Edge Finishing Process on Distorted Features through Robot-Assisted Computer Vision. J. Manuf. Syst. 2024, 74, 41–54. [Google Scholar] [CrossRef]
Operating Conditions | Values |
---|---|
Liquid flow rate, Q (mL/min) | 100, 200, 300, 400 |
Rotational speed, n (rpm) | 760, 860, 960, 1060 |
Liquid viscosity, μ (mPa·s) | 50, 150, 250, 350 |
Level | Test Factors | ||
---|---|---|---|
A/mL·min−1 | B/rpm | C/mPa·s | |
1 | 200 | 860 | 150 |
2 | 300 | 960 | 250 |
3 | 400 | 1060 | 350 |
Test Number | Test Factors | y/% | |||
---|---|---|---|---|---|
A | B | Blank Column | C | ||
1 | 1 | 1 | 1 | 1 | 69.69 |
2 | 1 | 2 | 2 | 2 | 65.81 |
3 | 1 | 3 | 3 | 3 | 63.89 |
4 | 2 | 1 | 2 | 3 | 70.53 |
5 | 2 | 2 | 3 | 1 | 72.95 |
6 | 2 | 3 | 1 | 2 | 69.82 |
7 | 3 | 1 | 3 | 2 | 71.06 |
8 | 3 | 2 | 1 | 3 | 70.20 |
9 | 3 | 3 | 2 | 1 | 73.37 |
Parameters | A | B | Blank Column | C |
---|---|---|---|---|
K1 | 199.39 | 211.28 | 209.71 | 216.01 |
K2 | 213.30 | 208.96 | 209.71 | 206.69 |
K3 | 214.63 | 207.08 | 207.90 | 204.62 |
k1 | 66.46 | 70.43 | 69.90 | 72.00 |
k2 | 71.10 | 69.65 | 69.90 | 68.90 |
k3 | 71.54 | 69.03 | 69.30 | 68.21 |
R | 5.08 | 1.40 | 0.60 | 3.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Q.; Shi, W.; Duan, N.; Huang, H.; Zhang, Y. Experiment and Simulation of Liquid Film Flow Driving Abrasive Particle Dispersion on the Surface of a Rotating Disk. Machines 2024, 12, 441. https://doi.org/10.3390/machines12070441
Fu Q, Shi W, Duan N, Huang H, Zhang Y. Experiment and Simulation of Liquid Film Flow Driving Abrasive Particle Dispersion on the Surface of a Rotating Disk. Machines. 2024; 12(7):441. https://doi.org/10.3390/machines12070441
Chicago/Turabian StyleFu, Qiong, Weibin Shi, Nian Duan, Hui Huang, and Yong Zhang. 2024. "Experiment and Simulation of Liquid Film Flow Driving Abrasive Particle Dispersion on the Surface of a Rotating Disk" Machines 12, no. 7: 441. https://doi.org/10.3390/machines12070441
APA StyleFu, Q., Shi, W., Duan, N., Huang, H., & Zhang, Y. (2024). Experiment and Simulation of Liquid Film Flow Driving Abrasive Particle Dispersion on the Surface of a Rotating Disk. Machines, 12(7), 441. https://doi.org/10.3390/machines12070441