Fault Identification of Direct-Shift Gearbox Using Variational Mode Decomposition and Convolutional Neural Network
Abstract
:1. Introduction
- The use of VMD allows for a more refined analysis of vibration signals compared to traditional Fourier or wavelet transforms, capturing subtle changes in signal characteristics that are indicative of different fault types.
- By decomposing the signal into intrinsic mode functions (IMFs), this method facilitates the extraction of both time-domain and frequency-domain features that are crucial for distinguishing between normal and faulty conditions.
- The CNN architecture is tailored to process the extracted features, enabling robust classification even in the presence of noise and varying operational conditions. This adaptability is essential for real-world applications where gearbox operating environments can be highly dynamic.
- Extensive experiments were conducted to validate the effectiveness of the proposed method, including comparisons with existing techniques. The results demonstrate significant improvements in fault detection, accuracy, and reliability.
2. Preliminaries
2.1. Description of Variational Mode Decomposition (VMD)
- (a)
- Minimization of (modes) and
- (b)
- Minimization of (center frequencies).
2.2. Scalogram
2.3. Convolution Neural Network (CNN)
3. Fault Identification Scheme
4. Application of Fault Identification Scheme to DSG Test Rig Data
5. Results and Discussion
Results of the CNN Model and Its Comparison with Other Classification Models
- If the p-value is greater than 0.01, we accept the null hypothesis (H0) and reject the alternative hypothesis (H1), indicating that there is no significant difference between CNN and other methods of artwork.
- If the calculated p-value is below 0.05, then H1 is accepted and H0 is rejected, indicating a significant difference between CNN and other art methods.
6. Conclusions
- (a)
- The signal-processing technique VMD, along with the statistical parameter kurtosis, plays a significant role in identifying the impact characteristics that are not observed in the raw vibration signal due to the transmission path.
- (b)
- The proposed fault identification scheme is capable of classifying the different health conditions with 100% accuracy.
- (c)
- The proposed fault identification scheme was compared with other classifiers in terms of classification accuracy. The results of the comparison show that the proposed fault identification scheme is at least 13.85% more reliable.
- (d)
- In the future, the authors will use techniques like synthetic data generation, noise addition, and signal transformation to create a more diverse and representative dataset. Also, the authors will attempt to tune the hyper-parameters of the CNN through optimization techniques.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmidt, S.; Zimroz, R.; Chaari, F.; Heyns, P.S.; Haddar, M. A simple condition monitoring method for gearboxes operating in impulsive environments. Sensors 2020, 20, 2115. [Google Scholar] [CrossRef]
- Schreiber, W.; Rudolph, F.; Becker, V. The new dual clutch gearbox from Volkswagen. ATZ Worldw. 2003, 105, 2–6. [Google Scholar] [CrossRef]
- Rathi, P.; Patil, P.A.J. Direct Shift Gear Transmission. In Proceedings of the 3rd International Conference on Ideas, Impact and Innovation in Mechanical Engineering (ICIIIME 2017), Pune, India, 1–2 June 2017; pp. 180–184. [Google Scholar]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Isham, M.F.; Leong, M.S.; Lim, M.H.; Ahmad, Z.A. Variational mode decomposition: Mode determination method for rotating machinery diagnosis. J. Vibroeng. 2018, 20, 2604–2621. [Google Scholar] [CrossRef]
- Singh, D.S.; Zhao, Q. Pseudo-fault signal assisted EMD for fault detection and isolation in rotating machines. Mech. Syst. Signal Process. 2016, 81, 202–218. [Google Scholar] [CrossRef]
- Chang, K.M. Ensemble empirical mode decomposition: A Noise-Assited. Biomed. Tech. 2010, 55, 193–201. [Google Scholar] [CrossRef]
- Yeh, J.R.; Shieh, J.S.; Huang, N.E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Adv. Adapt. Data Anal. 2010, 2, 135–156. [Google Scholar] [CrossRef]
- Li, H.; Hu, Y.; Li, F.; Meng, G. Succinct and fast empirical mode decomposition. Mech. Syst. Signal Process. 2017, 85, 879–895. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, C.; Fu, W.; Liu, J.; Yu, T.; Chen, H. A modified variational mode decomposition method based on envelope nesting and multi-criteria evaluation. J. Sound Vib. 2020, 468, 115099. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Li, Y.; Yang, B.J. Denoising of seismic data in desert environment based on a variational mode decomposition and a convolutional neural network. Geophys. J. Int. 2020, 221, 1211–1225. [Google Scholar] [CrossRef]
- O’Shea, K.; Nash, R. An Introduction to Convolutional Neural Networks. arXiv 2015, arXiv:1511.08458. [Google Scholar]
- Vashishtha, G.; Chauhan, S.; Kumar, S.; Kumar, R.; Zimroz, R.; Kumar, A. Intelligent fault diagnosis of worm gearbox based on adaptive CNN using amended gorilla troop optimization with quantum gate mutation strategy. Knowl.-Based Syst. 2023, 280, 110984. [Google Scholar] [CrossRef]
- Liu, C.; Cheng, G.; Chen, X.; Pang, Y. Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN. Sensors 2018, 18, 1523. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Bai, H.; Yan, H.; Wang, R.; Guo, C.; Jia, X. Diesel Engine Fault Diagnosis Method Based on Optimized VMD and Improved CNN. Processes 2022, 10, 2162. [Google Scholar] [CrossRef]
- Xu, Z.; Li, C.; Yang, Y. Fault diagnosis of rolling bearing of wind turbines based on the Variational Mode Decomposition and Deep Convolutional Neural Networks. Appl. Soft Comput. 2020, 95, 106515. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, L.; Qian, S. A small sample bearing fault diagnosis method based on variational mode decomposition, autocorrelation function, and convolutional neural network. Int. J. Adv. Manuf. Technol. 2023, 124, 3887–3898. [Google Scholar] [CrossRef]
- He, D.; Liu, C.; Jin, Z.; Ma, R.; Chen, Y.; Shan, S. Fault diagnosis of flywheel bearing based on parameter optimization variational mode decomposition energy entropy and deep learning. Energy 2022, 239, 122108. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, G.; Li, M.; Yin, H. Variational mode decomposition denoising combined the detrended fluctuation analysis. Signal Process. 2016, 125, 349–364. [Google Scholar] [CrossRef]
- Lu, J.; Yue, J.; Zhu, L.; Li, G. Variational mode decomposition denoising combined with improved Bhattacharyya distance. Measurement 2020, 151, 107283. [Google Scholar] [CrossRef]
- Vashishtha, G.; Kumar, R. Centrifugal pump impeller defect identification by the improved adaptive variational mode decomposition through vibration signals. Eng. Res. Express 2021, 3, 035041. [Google Scholar] [CrossRef]
- Luo, J.; Wen, G.; Lei, Z.; Su, Y.; Chen, X. Weak signal enhancement for rolling bearing fault diagnosis based on adaptive optimized VMD and SR under strong noise background. Meas. Sci. Technol. 2023, 34, 064001. [Google Scholar] [CrossRef]
- Verstraete, D.; Ferrada, A.; Droguett, E.L.; Meruane, V.; Modarres, M. Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings. Shock Vib. 2017, 2017, 5067651. [Google Scholar] [CrossRef]
- Hoang, D.T.; Kang, H.J. Rolling element bearing fault diagnosis using convolutional neural network and vibration image. Cogn. Syst. Res. 2019, 53, 42–50. [Google Scholar] [CrossRef]
- Vashishtha, G.; Kumar, R. An amended grey wolf optimization with mutation strategy to diagnose bucket defects in Pelton wheel. Measurement 2022, 187, 110272. [Google Scholar] [CrossRef]
- Vashishtha, G.; Kumar, R. An effective health indicator for the Pelton wheel using a Levy flight mutated genetic algorithm. Meas. Sci. Technol. 2021, 32, 094003. [Google Scholar] [CrossRef]
S. No | Health Condition | Training Samples | Testing Samples |
---|---|---|---|
1 | Healthy | 36 (12 × 3 = 36) | 36 (12 × 3 = 36) |
2 | Tooth Chipping | ||
3 | Tooth Pitting |
Layer | Layer Name | Layer Size |
---|---|---|
1 | Input | 227 × 227 × 3 |
2 | Convolution 1 | 55 × 55 × 96 |
3 | Max Pooling 1 | 27 × 27 × 96 |
4 | Convolution 2 | 27 × 27 × 256 |
5 | Max Pooling 2 | 13 × 13 × 256 |
6 | Convolution 3 | 13 × 13 × 384 |
7 | Convolution 4 | 13 × 13 × 384 |
8 | Convolution 5 | 13 × 13 × 256 |
9 | Fully Connected Layer | 1 × 1 × 4096 |
10 | Softmax | 1 × 1 × 1000 |
11 | Classify output | - |
Model Name | Computation Time (in Sec) for Each Iteration | Accuracy % | Sensitivity % | Precision % |
---|---|---|---|---|
ELM | 28.35 | 86.15 | 89.82 | 88.51 |
SVM | 25.67 | 83.06 | 85.73 | 86.27 |
Decision tree (DT) | 20.98 | 87.25 | 83.18 | 87.36 |
Random forest (RF) | 18.84 | 80.96 | 88.73 | 86.49 |
CNN | 10.3 | 100 | 98.87 | 98.59 |
Algorithms | F-Value | p-Value | Hypothesis | |||||
---|---|---|---|---|---|---|---|---|
CNN | ELM | SVM | DT | RF | 6.89 | 0.0035 | H1 | |
10 | 10 | 10 | 10 | 10 | ||||
186 | 218 | 240 | 235 | 265 | ||||
Mean | 18.6 | 21.8 | 24 | 23.5 | 26.5 | |||
3606 | 4826 | 5830 | 5650 | 6520 | ||||
Std. Dev. | 1.0332 | 2.8597 | 2.7889 | 3.8974 | 4.0845 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.; Kumar, P.; Vashishtha, G.; Chauhan, S.; Zimroz, R.; Kumar, S.; Kumar, R.; Gupta, M.K.; Ross, N.S. Fault Identification of Direct-Shift Gearbox Using Variational Mode Decomposition and Convolutional Neural Network. Machines 2024, 12, 428. https://doi.org/10.3390/machines12070428
Kumar R, Kumar P, Vashishtha G, Chauhan S, Zimroz R, Kumar S, Kumar R, Gupta MK, Ross NS. Fault Identification of Direct-Shift Gearbox Using Variational Mode Decomposition and Convolutional Neural Network. Machines. 2024; 12(7):428. https://doi.org/10.3390/machines12070428
Chicago/Turabian StyleKumar, Rishikesh, Prabhat Kumar, Govind Vashishtha, Sumika Chauhan, Radoslaw Zimroz, Surinder Kumar, Rajesh Kumar, Munish Kumar Gupta, and Nimel Sworna Ross. 2024. "Fault Identification of Direct-Shift Gearbox Using Variational Mode Decomposition and Convolutional Neural Network" Machines 12, no. 7: 428. https://doi.org/10.3390/machines12070428
APA StyleKumar, R., Kumar, P., Vashishtha, G., Chauhan, S., Zimroz, R., Kumar, S., Kumar, R., Gupta, M. K., & Ross, N. S. (2024). Fault Identification of Direct-Shift Gearbox Using Variational Mode Decomposition and Convolutional Neural Network. Machines, 12(7), 428. https://doi.org/10.3390/machines12070428