Research of Energy Efficiency and Environmental Performance of Vehicle Power Plant Converted to Work on Alternative Fuels
Abstract
:1. Introduction
- In a gaseous state under pressure in containers;
- In the solid-phase bound state in metal hydrides;
- In a chemically bound state in liquid media;
- In a chemically liquid state in cryogenic tanks.
- Electrolysis of water;
- Cracking of methane (catalytic decomposition);
- Auto thermal reforming (oxygen or air conversion);
- Steam conversion.
- To theoretically investigate the possibilities of converting diesel engines to alternative mixed hydrogen gas fuels based on methanol with hydrogen generation on the carboard;
- To experimentally investigate the main energy and environmental characteristics of the D21 diesel engine converted to operate on alternative mixed hydrogen gas fuels based on methanol.
2. Materials and Methods
2.1. Thermochemical Generation in Automobile On-Board Hydrogen Reactors
2.2. Experimental On-Board Hydrogen Reactors of Diesel Engine
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mateichyk, V.; Kostian, N.; Smieszek, M.; Gritsuk, I.; Verbovskyi, V. Review of Methods for Evaluating the Energy Efficiency of Vehicles with Conventional and Alternative Power Plants. Energies 2023, 16, 6331. [Google Scholar] [CrossRef]
- Boichenko, S.; Tarasiuk, O. World Practicies and Prospects of Using Hydrogen As a Motor Fuel. In Proceedings of the 2022 IEEE 8th International Conference on Energy Smart Systems, ESS 2022—Proceedings, Kyiv, Ukraine, 12–14 October 2022; pp. 127–132. [Google Scholar] [CrossRef]
- Tsiuman, M.; Mateichyk, V.; Smieszek, M.; Sadovnyk, I.; Artemenko, R.; Tsiuman, Y.; Gritsuk, I.; Koval, A. The System for Adding Hydrogen-containing Gas to the Air Charge of the Spark Ignition Engine Using a Thermoelectric Generator. SAE Tech. Pap. 2020, 1, 2142. [Google Scholar] [CrossRef]
- Korohodskyi, V.; Leontiev, D.; Rogovyi, A.; Voronkov, O.; Prokopiuk, D. Research of Spark Ignition Engine and Internal Mixture Formation Using Single-Zone, Two-Zone and Three-Zone Calculation Model of It Working Process. SAE Tech. Pap. 2022, 1, 1000. [Google Scholar] [CrossRef]
- Panchuk, M.; Kryshtopa, S.; Panchuk, A. Innovative Technologies for the Creation of a New Sustainable, Environmentally Neutral Energy Production in Ukraine. In Proceedings of the 2020 International Conference on Decision Aid Sciences and Application, DASA, Sakheer, Bahrain, 8–9 November 2020; pp. 732–737. [Google Scholar] [CrossRef]
- Ribun, V.; Boichenko, S.; Kale, U. Advances in gas-to-liquid technology for environmentally friendly fuel synthesis: Analytical review of world achievements. Energy Rep. 2023, 9, 5500–5508. [Google Scholar] [CrossRef]
- Gorski, K.; Smigins, R. Impact of ether/ethanol and biodiesel blends on combustion process of compression ignition engine. In Proceedings of the 10th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 26–27 May 2021; Volume 10, pp. 260–265. Available online: https://www.tf.lbtu.lv/conference/proceedings2011/Papers/048_Gorski.pdf (accessed on 1 April 2023).
- Liu, J.; Liang, W.; Ma, H.; Ji, Q.; Xiang, P.; Sun, P.; Wang, P.; Wei, M.; Ma, H. Effects of integrated aftertreatment system on regulated and unregulated emission characteristics of non-road methanol/diesel dual-fuel engine. Energy 2023, 282, 128819. [Google Scholar] [CrossRef]
- Panchuk, M.; Kryshtopa, S.; Sladkowski, A.; Panchuk, A.; Mandryk, I. Efficiency of production of motor biofuels for water and land transport. Nase More 2019, 66, 6–12. [Google Scholar] [CrossRef]
- Marocco, P.; Ferrero, D.; Gandiglio, M.; Ortiz, M.; Sundseth, K.; Lanzini, A.; Santarelli, M. A study of the techno-economic feasibility of H2-based energy storage systems in remote areas. Energy Convers. Manag. 2020, 211, 112768. [Google Scholar] [CrossRef]
- Kryshtopa, S.; Górski, K.; Longwic, R.; Smigins, R.; Kryshtopa, L.; Matijošius, J. Using Hydrogen Reactors to Improve the Diesel Engine Performance. Energies 2022, 15, 3024. [Google Scholar] [CrossRef]
- Modi, P.; Aguey-Zinsou, K. Titanium-iron-manganese (TiFe0.85Mn0.15) alloy for hydrogen storage: Reactivation upon oxidation. Int. J. Hydrog. Energy 2019, 44, 16757–16764. [Google Scholar] [CrossRef]
- Lázár, M.; Mihálik, I.; Brestovič, T.; Jasminská, N.; Tóth, L.; Dobáková, R.; Duda, F.; Kmeťová, Ľ.; Hudák, Š. A Newly Proposed Method for Hydrogen Storage in a Metal Hydride Storage Tank Intended for Maritime and Inland Shipping. J. Mar. Sci. Eng. 2023, 11, 1643. [Google Scholar] [CrossRef]
- Hirscher, M.; Yartys, V.; Baricco, M.; von Colbe, J.B.; Blanchard, D.; Bowman, R.; Broom, D.; Zlotea, C. Materials for hydrogen-based energy storage—past, recent progress and future outlook. J. Alloys Compd. 2020, 827, 153548. [Google Scholar] [CrossRef]
- Comanescu, C. Graphene Supports for Metal Hydride and Energy Storage Applications. Crystals 2023, 13, 878. [Google Scholar] [CrossRef]
- Zhang, T.; Uratani, J.; Huang, Y.; Xu, L.; Griffiths, S.; Ding, Y. Hydrogen liquefaction and storage: Recent progress and perspectives. Renew. Sustain. Energy Rev. 2023, 176, 113204. [Google Scholar] [CrossRef]
- Beasy, K.; Emery, S.; Pryor, K.; Vo, T.A. Skilling the green hydrogen economy: A case study from Australia. Int. J. Hydrog. Energy 2023, 48, 19811–19820. [Google Scholar] [CrossRef]
- Stenina, I.; Yaroslavtsev, A. Modern Technologies of Hydrogen Production. Processes 2023, 11, 56. [Google Scholar] [CrossRef]
- Van, L.P.; Chi, K.D.; Duc, T.N. Review of hydrogen technologies based microgrid: Energy management systems, challenges and future recommendations. Int. J. Hydrog. Energy 2023, 48, 14127–14148. [Google Scholar] [CrossRef]
- Rasul, M.G.; Hazrat, M.A.; Sattar, M.A.; Jahirul, M.I.; Shearer, M.J. The future of hydrogen: Challenges on production, storage and applications. Energy Convers. Manag. 2022, 272, 116326. [Google Scholar] [CrossRef]
- Kryshtopa, S.; Panchuk, M.; Kozak, F.; Dolishnii, B.; Mykytii, I.; Skalatska, O. Fuel economy raising of alternative fuel converted diesel engines. East. Eur. J. Enterp. Technol. 2018, 4/8, 6–13. [Google Scholar] [CrossRef]
- Górski, K.; Smigins, R.; Matijošius, J.; Rimkus, A.; Longwic, R. Physicochemical Properties of Diethyl Ether—Sunflower Oil Blends and Their Impact on Diesel Engine Emissions. Energies 2022, 15, 4133. [Google Scholar] [CrossRef]
- Smigins, R. Ecological Impact of CNG/gasoline bi-fuelled vehicles. Proc. Conf. Eng. Rural. Dev. 2017, 16, 128–133. [Google Scholar] [CrossRef]
- Boopathi, D.; Sonthalia, A.; Devanand, S. Experimental investigations on the effect of hydrogen induction on performance and emission behaviour of a single cylinder diesel engine fuelled with palm oil methyl ester and its blend with diesel. J. Eng. Sci. Technol. 2017, 12, 1972–1987. [Google Scholar]
- Cernat, A.; Pana, C.; Negurescu, N.; Nutu, C.; Fuiorescu, D.; Lazaroiu, G. Aspects of an experimental study of hydrogen use at automotive diesel engine. Heliyon 2023, 9, e13889. [Google Scholar] [CrossRef]
- Cherednichenko, O. Efficiency Analysis of Methanol Usage for Marine Turbine Power Plant Operation Based on Waste Heat Chemical Regeneration. Probl. Energeticii Reg. 2019, 1, 102–111. [Google Scholar] [CrossRef]
- Rudbahs, R.; Smigins, R. Experimental research on biodiesel compatibility with fuel system elastomers. Proc. Conf. Eng. Rural. Dev. 2014, 13, 278–282. [Google Scholar]
- Gritsuk, I.; Pohorletskyi, D.; Mateichyk, V.; Ahieiev, M.; Sadovnyk, I. Improving the Processes of Thermal Preparation of an Automobile Engine with Petrol and Gas Supply Systems (Vehicle Engine with Petrol and LPG Supplying Systems). SAE Tech. Pap. 2020, 1, 2031. [Google Scholar] [CrossRef]
- Smigins, R. Perspectives of low level ethanol and biodiesel/diesel fuel blends on diesel engine emission reduction. In Proceedings of the Transport Means-Proceedings of the International Conference, Juodkrante, Lithuania, 5 October 2016; pp. 337–341. [Google Scholar]
- Boretti, A. Advantages and Disadvantages of Diesel Single and Dual-Fuel Engines. Front. Mech. Eng. 2019, 5, 64. [Google Scholar] [CrossRef]
- Afanasev, A.; Tretyakov, A. Simulation of diesel engine energy conversion processes. J. Min. Inst. 2016, 222, 839–852. [Google Scholar] [CrossRef]
- Kryshtopa, S.; Panchuk, M.; Dolishnii, B.; Hnyp, M.; Skalatska, O. Research into emissions of nitrogen oxides when converting the diesel engines to alternative fuels. East. Eur. J. Enterp. Technol. 2018, 1, 16–22. [Google Scholar] [CrossRef]
- Mäyrä, O.; Leiviskä, K. Modeling in Methanol Synthesis. In Methanol; Elsevier: Amsterdam, The Netherlands, 2018; pp. 475–492. [Google Scholar] [CrossRef]
- Liu, Z. Economic Analysis of Methanol Production from Coal/Biomass Upgrading. Energy Sources Part B-Econ. Plan. Policy 2018, 13, 66–71. [Google Scholar] [CrossRef]
- Tartakovsky, L.; Baibikov, V.; Veinblat, M. Modeling Methanol Steam Reforming for Internal Combustion Engine. Energy Power 2014, 4, 50–56. [Google Scholar] [CrossRef]
- Shamsul, N.; Kamarudin, S.; Rahman, N.; Kofli, N. An overview on the production of bio-methanol as potential renewable energy. Renew. Sustain. Energy Rev. 2014, 33, 578–588. [Google Scholar] [CrossRef]
- He, L.; Fu, Y.; Lidstrom, M. Quantifying Methane and Methanol Metabolism of “Methylotuvimicrobium buryatense” 5GB1C under Substrate Limitation. mSystems 2019, 4, 10–1128. [Google Scholar] [CrossRef]
- Wargula, Ł.; Waluś, J.K.; Krawiec, P. The problems of measuring the temperature of the small engines (SI) on the example of a drive for non-road mobile machines. MATEC Web Conf. 2019, 254, 04004. [Google Scholar] [CrossRef]
- Tang, G.; Wang, S.; Zhang, L.; Shang, H. Diagnosis and Improvement of Combustion Characteristics of Methanol Miniature Reciprocating Piston Internal Combustion Engine. Micromachines 2020, 11, 96. [Google Scholar] [CrossRef]
- Li, B.; Chen, Y.; Zhong, F.; Xu, H. Numerical Study on a Diesel/Dissociated Methanol Gas Compression Ignition Engine with Exhaust Gas Recirculation. Appl. Sci 2023, 13, 9612. [Google Scholar] [CrossRef]
- Dalena, F.; Senatore, A.; Marino, A.; Gordano, A.; Basile, M.; Basile, A. Methanol production and applications: An overview. In Methanol; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–28. [Google Scholar] [CrossRef]
- Karvounis, P.; Theotokatos, G.; Vlaskos, I.; Hatziapostolou, A. Methanol Combustion Characteristics in Compression Ignition Engines: A Critical Review. Energies 2023, 16, 8069. [Google Scholar] [CrossRef]
- Pérez-Fortes, M.; Schöneberger, J.C.; Boulamanti, A.; Tzimas, E. Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment. Appl. Energy 2016, 161, 718–732. [Google Scholar] [CrossRef]
- Borisut, P.; Nuchitprasittichai, A. Methanol Production via CO2 Hydrogenation: Sensitivity Analysis and Simulation-Based Optimization. Front. Energy Res. 2019, 7, 00081. [Google Scholar] [CrossRef]
- Drakon, A.; Eremin, A. The Influence of Biofuels Addition on Shock-Induced Ignition and Combustion of Methane–Hydrogen Mixtures. Fire 2023, 6, 460. [Google Scholar] [CrossRef]
- Zhang, Z.; Wen, M.; Cui, Y.; Ming, Z.; Wang, T.; Zhang, C.; Ampah, J.D.; Jin, C.; Huang, H.; Liu, H. Effects of Methanol Application on Carbon Emissions and Pollutant Emissions Using a Passenger Vehicle. Processes 2022, 10, 525. [Google Scholar] [CrossRef]
- Zhennan, H.; Sulong, G.; Xi, Z.; Shipei, X.; Ping, A.; Jiguang, C.; Jun, Y.; Feng, L.; Suyi, Z.; Miao, L.; et al. Reaction decoupling in thermochemical fuel conversion and technical progress based on decoupling using fluidized bed. Carbon Resour. Convers. 2018, 1, 109–125. [Google Scholar] [CrossRef]
- Liu, H.; Ma, J.; Tong, L.; Zheng, Z.; Yao, M. Investigation on the potential of high efficiency for internal combustion engines. Energies 2018, 11, 513. [Google Scholar] [CrossRef]
- Ma, B.; Yao, A.; Yao, C.; Chen, C.; Qu, G.; Wang, W.; Ai, Y. Multiple combustion modes existing in the engine operating in diesel methanol dual fuel. Energy 2021, 234, 121285. [Google Scholar] [CrossRef]
Properties | Diesel Fuel | Gasoline | Hydrogen |
---|---|---|---|
Flammability limit, % | 0.7–5 | 1.3–7.6 | 4–75 |
Auto-ignition temperature (C) | 280 | 440 | 585 |
The stoichiometric mix (kg/kg) | 14.55 | 15 | 34.7 |
The laminar flame speed (m/s) | 0.65 | 0.35 | 2.7 |
Flame temperature in the air (C) | 2290 | 2300 | 2045 |
Octane number | none | 85-98 | >126 |
Lower calorific value (MJ/kg) | 43.0 | 44.0 | 120.1 |
Energy Intensity, MJ/kg | Way |
---|---|
28–31 | In liquid state in pressure cryotanks |
6.5–7.2 | In liquid state |
1.1–2.6 | Compressed hydrogen in cylinders |
1.0–2.1 | Metal hydride battery |
The Basis for an Alternative Fuel | Conversion Temperature, °C |
---|---|
Diesel fuel | 1250 |
Methanol | 300 |
Methane | 700 |
Ethanol | 330 |
Propane | 420 |
The Characteristics of the Engine | Unit | Meaning |
---|---|---|
Type of experimental engine | − | 4-stroke |
Number of cylinders | − | 2 |
Diesel engine displacement | L | 2.1 |
Compression ratio for diesel fuel | − | 16.5 |
The method of mixing of diesel fuel | − | Direct injection |
The method of mixing of hydrogen fuel mixtures | − | Intake manifold injection |
Rated power of experimental diesel engine | kW | 18.5 |
Crankshaft speed at rated power | rpm | 1850 |
Efficient specific fuel consumption of diesel fuel | g/kWh | 248 |
Engine weight | kg | 278 |
Crankshaft Turning, rpm | Gas Temperature at the Hydrogen Reactor Outlet, K | Engine Power, kW | Liquid Methanol Consumption, kg/h | Gas Composition Outlet, % | ||
---|---|---|---|---|---|---|
H2 | CO | Methanol Vapor | ||||
1250 | 560 | 15.4 | 0.50 | 56.3 | 24.9 | 18.8 |
1850 | 610 | 18.1 | 0.59 | 65.9 | 33.8 | 0.3 |
Type of Fuel | Diesel Fuel | CNG | LPG | Ethanol | Methanol |
---|---|---|---|---|---|
Cost, euro/kg | 1.5–2.1 | 0.8–1.4 | 0.7–1.1 | 0.2–0.3 | 0.5–0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateichyk, V.; Kryshtopa, S.; Kryshtopa, L.; Smieszek, M.; Kostian, N.; Mosciszewski, J.; Marchuk, N. Research of Energy Efficiency and Environmental Performance of Vehicle Power Plant Converted to Work on Alternative Fuels. Machines 2024, 12, 285. https://doi.org/10.3390/machines12050285
Mateichyk V, Kryshtopa S, Kryshtopa L, Smieszek M, Kostian N, Mosciszewski J, Marchuk N. Research of Energy Efficiency and Environmental Performance of Vehicle Power Plant Converted to Work on Alternative Fuels. Machines. 2024; 12(5):285. https://doi.org/10.3390/machines12050285
Chicago/Turabian StyleMateichyk, Vasyl, Sviatoslav Kryshtopa, Liudmyla Kryshtopa, Miroslaw Smieszek, Nataliia Kostian, Jakub Mosciszewski, and Nazar Marchuk. 2024. "Research of Energy Efficiency and Environmental Performance of Vehicle Power Plant Converted to Work on Alternative Fuels" Machines 12, no. 5: 285. https://doi.org/10.3390/machines12050285
APA StyleMateichyk, V., Kryshtopa, S., Kryshtopa, L., Smieszek, M., Kostian, N., Mosciszewski, J., & Marchuk, N. (2024). Research of Energy Efficiency and Environmental Performance of Vehicle Power Plant Converted to Work on Alternative Fuels. Machines, 12(5), 285. https://doi.org/10.3390/machines12050285