Numerical Simulation of Rotary Ultrasonic Machining of the Nomex Honeycomb Composite Structure
Abstract
:1. Introduction
2. Presentation of the Numerical Approach Developed
2.1. Design of the Cutting Tool and the Structure
2.2. Setting Up of the Numerical Model
2.2.1. Presentation of the Numerical Model
2.2.2. Law of Behavior and Criterion of Damage
2.2.3. Cutting Force Calculation
3. Results and Discussion
3.1. Validation of the Numerical Model of the Cutting Simulation Assissted by Ultrasonic Vibration
3.1.1. Influence of the Feed Rate on the Cutting Force
3.1.2. Influence of the Spindle Speed on the Cutting Force
3.1.3. Influence of the Vibration Amplitude on the Cutting Force
3.2. Analysis of Machined Surface Quality
3.3. Analysis of Chip Distribution in Front of the Cutting Tool
4. Conclusions
- The influence of the feed rate on components Fx and Fy was carefully examined; it was observed that these components increase with the increase in the feed rate, both for the simulation and just for the experiment. Furthermore, the results indicate that the use of ultrasonic vibrations helps minimize the negative effects of components Fx and Fy for both directions. In the end, concrete agreement is observed between the obtained results by the numerical model and the results determined by the experiment.
- The analysis of components Fx and Fy as a function of the spindle speed reveals similarities between the orthotropic elastic behavior and that of composite materials. The significant reduction in components Fx and Fy with high spindle speeds is observed for the two cases tested, whether with or without UV. Interestingly, the simulation based on the orthotropic behavior with the Tsai–Wu failure criterion follows a similar trend as the experimental results.
- By analyzing the influence of feed component Fy on the quality of the machined surface, it becomes clear that this relationship is firmly established. The combination between ultrasonic vibrations and the reduction in feed component Fy demonstrates a significant improvement in the quality of the machined surface. A significant correlation is noted in the obtained results by the numerical model and those obtained by the experiment, which confirms the credibility of the proposed numerical model.
- The developed numerical model makes it possible to study the influence of vibration amplitude on components Fx and Fy. The obtained results clearly indicate that higher vibration amplitudes result in a significant reduction in these components, thus helping to avoid premature wear of the cutting tool. In the end, concrete agreement is noted between the obtained results by the numerical model and those determined by the experiment.
- The numerical model shows that feed component Fy prevails over Fx, due to the accumulation of material in front of the cutting tool and the low density of the Nomex paper constituting the NHC structure.
- The numerical model makes it possible to analyze the influence of vibration amplitude on chip accumulation in front of the cutting tool. The higher amplitudes appear to help reduce unwanted chip buildup, helping to improve machining efficiency, optimize machined surface quality and prevent premature chip wear of the cutting tool.
- The numerical model allows the analysis of complex machining simulations, which are difficult to perform experimentally. It thus offers researchers and engineers the possibility of improving cutting performance while avoiding costly experimental studies.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haq, S.U.; Raju, G.G. DC breakdown characteristics of high temperature polymer films. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 917. [Google Scholar] [CrossRef]
- Yang, C.Q.; He, Q.; Lyon, R.E.; Hu, Y. Investigation of the flammability of different textile fabrics using micro scale combustion calorimetry. Polym. Degrad. Stab. 2010, 95, 108–115. [Google Scholar] [CrossRef]
- Foo, C.C.; Chai, G.B.; Seah, L.K. Mechanical properties of Nomex material and Nomex honeycomb structure. Compos. Struct. 2007, 80, 588–594. [Google Scholar] [CrossRef]
- Castanie, B.; Bouvet, C.; Ginot, M. Review of composite sandwich structure in aeronautic applications. Compos. Part C Open Access 2020, 1, 100004. [Google Scholar] [CrossRef]
- Botelho, E.C.; Silva, R.A.; Pardini, L.C.; Rezende, M.C. A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Mater. Res. 2006, 9, 247–256. [Google Scholar] [CrossRef]
- Xu, J.; Wang, C.; Feng, P.; Jiang, E.; Feng, F. Meso-scale cracks initiation of Nomex honeycomb composites in orthogonal cutting with a straight blade cutter. Compos. Sci. Technol. 2023, 223, 109914. [Google Scholar] [CrossRef]
- Hu, X.P.; Chen, S.Y.; Zhang, Z.C. Research on curved surface forming of nomex honeycomb material based on ultrasonic NC cutting. Adv. Mater. Res. 2012, 538, 1377–1381. [Google Scholar] [CrossRef]
- Zarrouk, T.; Salhi, J.E.; Atlati, S.; Nouari, M.; Salhi, M.; Salhi, N. Modeling and numerical simulation of the chip formation process when machining Nomex. Environ. Sci. Pollut. Res. 2022, 29, 98–105. [Google Scholar] [CrossRef]
- Zarrouk, T.; Salhi, J.E.; Nouari, M.; Salhi, M.; Atlati, S.; Salhi, N. Analysis of friction and cutting parameters when milling honeycomb composite structures. Adv. Mech. Eng. 2021, 13, 16878140211034841. [Google Scholar] [CrossRef]
- Zarrouk, T.; Nouari, M.; Makich, H. Simulated Study of the Machinability of the Nomex Honeycomb Structure. J. Manuf. Mater. Process. 2023, 7, 28. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, S.; Ma, J.; Shen, J.; Batako, A.D. Study on the surface formation mechanism in scratching test with different ultrasonic vibration forms. J. Mater. Process. Technol. 2021, 294, 117108. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, L.; Zhang, G.; Ni, C.; Lin, B. Review of ultrasonic vibration-assisted machining in advanced materials. Int. J. Mach. Tools Manuf. 2020, 156, 103594. [Google Scholar] [CrossRef]
- Jain, A.K.; Pandey, P.M. Modeling of un-deformed chip thickness in RUM process and study of size effects in μ-RUM. Ultrasonics 2017, 77, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Liao, W.; Zheng, K.; Tian, W.; Liu, J.; Feng, J. Stability analysis of robotic longitudinal-torsional composite ultrasonic milling. Chin. J. Aeronaut. 2022, 35, 249–264. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, X.; Han, X.; Zhang, D. Influence of parameter matching on performance of high-speed rotary ultrasonic elliptical vibration-assisted machining for side milling of titanium alloys. Int. J. Adv. Fab. Technol. 2019, 101, 1333–1348. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, D.; Geng, D.; Shao, Z.; Liu, Y.; Jiang, X. Effects of tool vibration on surface integrity in rotary ultrasonic elliptical end milling of Ti–6Al–4V. J. Alloys Compd. 2020, 821, 153266. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Feng, P.; Guo, P. Damage formation and suppression in rotary ultrasonic machining of hard and brittle materials: A critical review. Céram. Int. 2018, 44, 1227–1239. [Google Scholar] [CrossRef]
- Wang, J.; Feng, P.; Zhang, J. Reducing edge chipping defect in rotary ultrasonic machining of optical glass by compound step-taper tool. J. Manuf. Processus 2018, 32, 213–221. [Google Scholar] [CrossRef]
- Zha, H.; Feng, P.; Zhang, J.; Yu, D.; Wu, Z. Material removal mechanism in rotary ultrasonic machining of high-volume fraction SiCp/Al composites. Int. J. Adv. Fab. Technol. 2018, 97, 2099–2109. [Google Scholar] [CrossRef]
- Dong, S.; Liao, W.; Zheng, K.; Liu, J.; Feng, J. Investigation on exit burr in robotic rotary ultrasonic drilling of CFRP/aluminum stacks. Int. J. Mech. Sci. 2019, 151, 868–876. [Google Scholar] [CrossRef]
- An, Q.; Dang, J.; Ming, W.; Qiu, K.; Chen, M. Experimental and Numerical Studies on Defect Characteristics During Milling of Aluminum Honeycomb Core. J. Manuf. Sci. Eng. 2019, 141, 031006. [Google Scholar] [CrossRef]
- Abbadi, A.; Tixier, C.; Gilgert, J.; Azari, A. Experimental study on the fatigue behaviour of honeycomb sandwich panels with artificial defects. Compos. Struct. 2015, 120, 394–405. [Google Scholar] [CrossRef]
- Meruane, V.; del Fierro, V. An inverse parallel genetic algorithm for the identification of skin/core debonding in honeycomb aluminium panels. Struct. Control Health Monit. 2015, 22, 1426–1439. [Google Scholar] [CrossRef]
- Wang, J.; Feng, P.; Zhang, J.; Guo, P. Experimental study on vibration stability in rotary ultrasonic machining of ceramic matrix composites: Cutting force variation at hole entrance. Ceram. Int. 2018, 44, 14386–14392. [Google Scholar] [CrossRef]
- Wang, H.; Cong, W.; Ning, F.; Hu, Y. A study on the effects of machining variables in surface grinding of CFRP composites using rotary ultrasonic machining. Int. J. Adv. Manuf. Technol. 2018, 95, 3651–3663. [Google Scholar] [CrossRef]
- Yuan, S.; Li, Z.; Zhang, C.; Guskov, A. Research into the transition of material removal mechanism for C/SiC in rotary ultrasonic face machining. Int. J. Adv. Manuf. Technol. 2018, 95, 1751–1761. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Hu, Y.; Zhang, D.; Cong, W.; Burks, A.R. Rotary ultrasonic machining of CFRP compo-sites: Effects of machining variables on workpiece delamination. In International Manufacturing Science and Engineering Conference. Am. Soc. Mech. Eng. 2019, 58752, V002T03A051. [Google Scholar] [CrossRef]
- Li, C.; Piao, Y.; Meng, B.; Hu, Y.; Li, L.; Zhang, F. Phase transition and plastic deformation mechanisms induced by self-rotating grinding of GaN single crystals. Int. J. Mach. Tools Manuf. 2022, 172, 103827. [Google Scholar] [CrossRef]
- Sandá, A.; Sanz, C. Rotary ultrasonic machining of ZrO2-NbC and ZrO2-WC ceramics. Int. J. Mach. Mach. Mater. 2020, 22, 165–179. [Google Scholar] [CrossRef]
- Abdo, B.M.A.; El-Tamimi, A.; Alkhalefah, H. Parametric Analysis and Optimization of Rotary Ultrasonic Machining of Zirconia (ZrO2) Ceramics. IOP Conf. Ser. Mater. Sci. Eng. 2020, 727, 012009. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, J.; Wu, Z.; Feng, P.; Yu, D. Study on the design of cutting disc in ultrasonicassisted machining of honeycomb composites. IOP Conf. Ser. Mater. Sci. Eng 2019, 611, 012032. [Google Scholar] [CrossRef]
- Sun, J.; Dong, Z.; Wang, X.; Wang, Y.; Qin, Y.; Kang, R. Simulation and experimental study of ultrasonic cutting for aluminum honeycomb by disc cutter. Ultrasonics 2020, 103, 106102. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Zhang, J.; Feng, P.; Yu, D.; Wu, Z.; Ke, M. Research on design and FE simulations of novel ultrasonic circular saw blade (UCSB) cutting tools for rotary ultrasonic machining of nomex honeycomb composites. In Proceedings of the 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 8–12 January 2019; pp. 113–119. [Google Scholar] [CrossRef]
- Ahmad, S.; Zhang, J.; Feng, P.; Yu, D.; Wu, Z. Experimental study on rotary ultrasonic machining (RUM) characteristics of Nomex honeycomb composites (NHCs) by circular knife cutting tools. J. Manuf. Process. 2020, 58, 524–535. [Google Scholar] [CrossRef]
- Chung, J.; Waas, A.M. Compressive Response of Honeycombs Under In-Plane Uniaxial Static and Dynamic Loading, Part 1: Experiments. AIAA J. 2002, 40, 966–973. [Google Scholar] [CrossRef]
- Goldsmith, W.; Louie, D.L. Axial perforation of aluminum honeycombs by projectiles. Int. J. Solids Struct. 1995, 32, 1017–1046. [Google Scholar] [CrossRef]
- Jaafar, M. Étude Expérimentale et Simulation Numérique de L’usinage des Matériaux en nids d’abeilles: Application au Fraisage des Structures Nomex® et Aluminium. Ph.D. Thesis, Université de Lorraine, Nancy, France, 2018. 〈NNT: 2018LORR0303〉. [Google Scholar]
- Kilchert, S. Nonlinear Finite Element Modelling of Degradation and Failure in Folded Core Composite Sandwich Structures. Ph.D. Thesis, Faculty of Aerospace Engineering and Geodesy of the Universität Stuttgart, Stuttgart, Germany, 2013. [Google Scholar] [CrossRef]
- Heimbs, S. Sandwichstrukturen mit Wabenkern: Experimentelle und Numerische Analyse des Schädigungsverhaltens unter Statischer und Kurzzeitdynamischer Belastung; Institut für Verbundwerkstoffe GmbH: Kaiserslautern, Germany, 2008. [Google Scholar]
- Liu, P.F.; Zheng, J.Y. Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics. Mater. Sci. Eng. A 2008, 485, 711–717. [Google Scholar] [CrossRef]
- Padhi, G.S.; Shenoi, R.A.; Moy, S.S.J.; Hawkins, G.L. Progressive failure and ultimate collapse of laminated composite plates in bending. Compos. Struct. 1997, 40, 277–291. [Google Scholar] [CrossRef]
- Gemkow, K.S.; Vignjevic, R. Strain-softening in continuum damage models: Investigation of MAT-058. In Proceedings of the 9th European LS-DYNA Conference, Manchester, UK, 2–4 June 2013. [Google Scholar]
- Kim, D.S.; Lee, J.R. Compressive Mechanical Properties of the Nomex/Thermoset Honeycomb Cores. Polym. Adv. Technol. 1997, 8, 1–7. [Google Scholar] [CrossRef]
- Lamb, A.J.; Pickett, A.K.; Chaudoye, F. Experimental characterisation and numerical modelling of hexagonal honeycomb cellular solids under multi-axial loading. Strain 2011, 47, 2–20. [Google Scholar] [CrossRef]
Frequency [KHz] | Spindle Speed [rpm] | Amplitude Vibration [µm] |
---|---|---|
22 | 1000 | 27 |
Mechanical Properties | |
---|---|
Density (g/cm3) | 1.4 |
E11 (MPa) | 9200 |
E22 (MPa) | 8300 |
E33 (MPa) | 4700 |
G12 (MPa) | 2600 |
G13, G23 (MPa) | 1700 |
ν12; ν13; ν23 | 0.35 |
Ultimate strength | |
Longitudinal tensile strength (MPa): Xt | 111 |
Longitudinal compressive strength (MPa): Xc | 53 |
Transverse tensile strength (MPa): Yt | 98 |
Transverse compressive strength (MPa): Yc | 47 |
In-plan shear strength (MPa): S12 | 59 |
Inter-laminar shear strength (MPa): S23 | 159 |
Elasticity Modules | Damage Index | Degradation of Mechanical Properties |
---|---|---|
E11 | H1 | (1-) |
E22 | H2 | (1-) |
E33 | H3 | (1-) |
G23 | H4 | (1-) |
G12 | H5 | (1-) |
G13 | H6 | (1-) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarrouk, T.; Nouari, M.; Salhi, J.-E.; Benbouaza, A. Numerical Simulation of Rotary Ultrasonic Machining of the Nomex Honeycomb Composite Structure. Machines 2024, 12, 137. https://doi.org/10.3390/machines12020137
Zarrouk T, Nouari M, Salhi J-E, Benbouaza A. Numerical Simulation of Rotary Ultrasonic Machining of the Nomex Honeycomb Composite Structure. Machines. 2024; 12(2):137. https://doi.org/10.3390/machines12020137
Chicago/Turabian StyleZarrouk, Tarik, Mohammed Nouari, Jamal-Eddine Salhi, and Abdelkader Benbouaza. 2024. "Numerical Simulation of Rotary Ultrasonic Machining of the Nomex Honeycomb Composite Structure" Machines 12, no. 2: 137. https://doi.org/10.3390/machines12020137
APA StyleZarrouk, T., Nouari, M., Salhi, J. -E., & Benbouaza, A. (2024). Numerical Simulation of Rotary Ultrasonic Machining of the Nomex Honeycomb Composite Structure. Machines, 12(2), 137. https://doi.org/10.3390/machines12020137