Arc Detection of Photovoltaic DC Faults Based on Mathematical Morphology
Abstract
:1. Introduction
2. Mathematical Morphology Theory
2.1. Basic Operations of Mathematical Morphology
2.2. Mathematical Morphological Operators and Their Combinations
3. Application of Mathematical Morphology on Fault Arc
3.1. Description of Experimental Environment and Equipment
3.1.1. Experimental Environment
3.1.2. Arc Generator
3.2. Analysis of Fault Arc Using Multi-Level Mathematical Morphological Filters
4. Experimental Results for DC Fault Arc Recognition Based on Deep Learning
Analysis of Fault Arc Using Multi-Level Mathematical Morphological Filters
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gleizes, A.; Gonzalez, J.J.; Freton, P. Thermal plasma modelling. J. Phys. D Appl. Phys. 2005, 38, R153. [Google Scholar] [CrossRef]
- Kim, S.W.; Lee, E.D.; Je, D.H.; Seo, S.W. A physical and logical security framework for multilevel AFCI systems in smart grid. IEEE Trans. Smart Grid 2011, 2, 496–506. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, Y.; Wang, X.; Zheng, Y. IoT-Enabled Few-Shot Image Generation for Power Scene Defect Detection Based on Self-Attention and Global–Local Fusion. Sensors 2023, 23, 6531. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Calva, T.; Morinigo-Sotelo, D.; Fernandez-Cavero, V.; Romero-Troncoso, R. Early detection of faults in induction motors—A review. Energies 2022, 15, 7855. [Google Scholar] [CrossRef]
- Fernandez-Cavero, V.; García-Escudero, L.A.; Pons-Llinares, J.; Fernández-Temprano, M.A.; Duque-Perez, O.; Morinigo-Sotelo, D. Diagnosis of broken rotor bars during the startup of inverter-fed induction motors using the dragon transform and functional ANOVA. Appl. Sci. 2021, 11, 3769. [Google Scholar] [CrossRef]
- Fernandez-Cavero, V.; Pons-Llinares, J.; Duque-Perez, O.; Morinigo-Sotelo, D. Detection of broken rotor bars in nonlinear startups of inverter-fed induction motors. IEEE Trans. Ind. Appl. 2021, 57, 2559–2568. [Google Scholar] [CrossRef]
- Lu, S.; Sirojan, T.; Phung, B.; Zhang, D.; Ambikairajah, E. DA-DCGAN: An effective methodology for DC series arc fault diagnosis in photovoltaic systems. IEEE Access 2019, 7, 45831–45840. [Google Scholar] [CrossRef]
- Chen, Y.; Lao, K.W.; Qi, D.; Hui, H.; Yang, S.; Yan, Y.; Zheng, Y. Distributed self-triggered control for frequency restoration and active power sharing in islanded microgrids. IEEE Trans. Ind. Inform. 2023, 19, 10635–10646. [Google Scholar] [CrossRef]
- Wang, J.; Xu, X.; Wu, L.; Huang, Q.; Chen, Z.; Hu, W. Risk-averse based optimal operational strategy of grid-connected photovoltaic/wind/battery/diesel hybrid energy system in the electricity/hydrogen markets. Int. J. Hydrogen Energy 2023, 48, 4631–4648. [Google Scholar] [CrossRef]
- Wu, Z.; Hu, Y.; Wen, J.X.; Zhou, F.; Ye, X. A review for solar panel fire accident prevention in large-scale PV applications. IEEE Access 2020, 8, 132466–132480. [Google Scholar] [CrossRef]
- International Electrotechnical Commission. IEC 61730: Photovoltaic (PV) Module Safety Qualification—Part.1, Edition 2.0; International Electrotechnical Commission: Geneva, Switzerland, 2016; p. IEC 61730–1. [Google Scholar]
- International Electrotechnical Commission. IEC 61730: Photovoltaic (PV) Module Safety Qualification—Part.2, Edition 2.0; International Electrotechnical Commission: Geneva, Switzerland, 2016; p. IEC 61730–2. [Google Scholar]
- Alam, M.K.; Khan, F.; Johnson, J.; Flicker, J. A comprehensive review of catastrophic faults in PV arrays: Types, detection, and mitigation techniques. IEEE J. Photovolt. 2015, 5, 982–997. [Google Scholar] [CrossRef]
- Yin, Z.; Wang, L.; Zhang, B.; Meng, L.; Zhang, Y. An integrated DC series arc fault detection method for different operating conditions. IEEE Trans. Ind. Electron. 2020, 68, 12720–12729. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, X.; Huang, Q.; Lee, W.J. Preemptive medium-low voltage arc flash detection with geometric distribution analysis on magnetic field. IEEE Trans. Ind. Appl. 2021, 57, 2129–2137. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, Y.; Niu, F.; Zhu, C.; Xu, Y.; Li, K. A series DC arc fault detection method based on steady pattern of high-frequency electromagnetic radiation. IEEE Trans. Plasma Sci. 2019, 47, 4370–4377. [Google Scholar] [CrossRef]
- Xiong, Q.; Ji, S.; Zhu, L.; Zhong, L.; Liu, Y. A novel DC arc fault detection method based on electromagnetic radiation signal. IEEE Trans. Plasma Sci. 2017, 45, 472–478. [Google Scholar] [CrossRef]
- Miao, W.; Wang, Z.; Wang, F.; Lam, K.H.; Pong, P.W. Multicharacteristics Arc model and autocorrelation-algorithm based arc fault detector for DC microgrid. IEEE Trans. Ind. Electron. 2022, 70, 4875–4886. [Google Scholar] [CrossRef]
- Ke, Y.; Zhang, W.; Suo, C.; Wang, Y.; Ren, Y. Research on low-voltage AC series arc-fault detection method based on electromagnetic radiation characteristics. Energies 2022, 15, 1829. [Google Scholar] [CrossRef]
- Li, K.; Zhao, S.; Wang, Y. A planar location method for DC arc faults using dual radiation detection points and DANN. IEEE Trans. Instrum. Meas. 2020, 69, 5478–5487. [Google Scholar] [CrossRef]
- Saleh, S.A.; Valdes, M.E.; Mardegan, C.S.; Alsayid, B. The state-of-the-art methods for digital detection and identification of arcing current faults. IEEE Trans. Ind. Appl. 2019, 55, 4536–4550. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, F.; Zhang, X.; Zhang, S. Series AC arc fault detection method based on hybrid time and frequency analysis and fully connected neural network. IEEE Trans. Ind. Inform. 2018, 15, 6210–6219. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, C.; Yang, Z.; Zhao, Y.; Wang, X. Remaining useful life estimation combining two-step maximal information coefficient and temporal convolutional network with attention mechanism. IEEE Access 2021, 9, 16323–16336. [Google Scholar] [CrossRef]
- Chen, H.; Wang, X.-B.; Liu, J.; Wang, J.; Ye, W. Collaborative multiple UAVs navigation with GPS/INS/UWB jammers using sigma point belief propagation. IEEE Access 2020, 8, 193695–193707. [Google Scholar] [CrossRef]
- Lu, Q.; Ye, Z.; Su, M.; Li, Y.; Sun, Y.; Huang, H. A DC series arc fault detection method using line current and supply voltage. IEEE Access 2020, 8, 10134–10146. [Google Scholar] [CrossRef]
- Park, H.P.; Chae, S. DC series arc fault detection algorithm for distributed energy resources using arc fault impedance modeling. IEEE Access 2020, 8, 179039–179046. [Google Scholar] [CrossRef]
- Zhong, J.H.; Liang, J.; Yang, Z.X.; Wong, P.K.; Wang, X.B. An effective fault feature extraction method for gas turbine generator system diagnosis. Shock Vib. 2016, 2016, 9359426. [Google Scholar] [CrossRef]
- Ahmadi, M.; Samet, H.; Ghanbari, T. Series arc fault detection in photovoltaic systems based on signal-to-noise ratio characteristics using cross-correlation function. IEEE Trans. Ind. Inform. 2019, 16, 3198–3209. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.; Xiong, J. Series arc fault identification for photovoltaic system based on time-domain and time-frequency-domain analysis. IEEE J. Photovolt. 2017, 7, 1105–1114. [Google Scholar] [CrossRef]
- Aziz, F.; Haq, A.U.; Ahmad, S.; Mahmoud, Y.; Jalal, M.; Ali, U. A novel convolutional neural network-based approach for fault classification in photovoltaic arrays. IEEE Access 2020, 8, 41889–41904. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, S.; Wang, B.; Habetler, T.G. Deep learning algorithms for bearing fault diagnostics—A comprehensive review. IEEE Access 2020, 8, 29857–29881. [Google Scholar] [CrossRef]
- Xu, W.; Yang, Z.; Wang, X. A technical and business perspective on wireless sensor network for manufacturing execution system. Math. Probl. Eng. 2015, 2015, 267195. [Google Scholar] [CrossRef]
- Yang, Z.X.; Yu, G.; Zhao, J.; Wong, P.K.; Wang, X.B. Online equivalent degradation indicator calculation for remaining charging-discharging cycle determination of lithium-ion batteries. IEEE Trans. Veh. Technol. 2021, 70, 6613–6625. [Google Scholar] [CrossRef]
- Fan, B.; Yang, Z.X.; Wang, X.B.; Song, L.; Song, S.Z. Model reference adaptive vector control for induction motor without speed sensor. Adv. Mech. Eng. 2017, 9, 1687814016683086. [Google Scholar] [CrossRef]
- Chen, X.; Gao, W.; Hong, C.; Tu, Y. A novel series arc fault detection method for photovoltaic system based on multi-input neural network. Int. J. Electr. Power Energy Syst. 2022, 140, 108018. [Google Scholar] [CrossRef]
- Georgijevic, N.L.; Jankovic, M.V.; Srdic, S.; Radakovic, Z. The detection of series arc fault in photovoltaic systems based on the arc current entropy. IEEE Trans. Power Electron. 2015, 31, 5917–5930. [Google Scholar] [CrossRef]
- Qian, H.; Lee, B.; Wu, Z.; Wang, G. Research on DC arc fault detection in PV systems based on adjacent multi-segment spectral similarity and adaptive threshold model. Sol. Energy 2023, 264, 112011. [Google Scholar] [CrossRef]
- Wang, W.; Xu, B.; Zou, G.; Liang, D. Arc fault detection method based on voltage characteristic energy amplitude and phase mapping distribution distances. Electr. Power Syst. Res. 2023, 225, 109866. [Google Scholar] [CrossRef]
- Gao, W.; Jin, H.; Yang, G. Series arc fault diagnosis method of photovoltaic arrays based on GASF and improved DCGAN. Adv. Eng. Inform. 2022, 54, 101809. [Google Scholar] [CrossRef]
- Et-taleby, A.; Chaibi, Y.; Allouhi, A.; Boussetta, M.; Benslimane, M. A combined convolutional neural network model and support vector machine technique for fault detection and classification based on electroluminescence images of photovoltaic modules. Sustain. Energy Grids Netw. 2022, 32, 100946. [Google Scholar] [CrossRef]
- Yao, R.; Guo, C.; Deng, W.; Zhao, H. A novel mathematical morphology spectrum entropy based on scale-adaptive techniques. ISA Trans. 2022, 126, 691–702. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, H.; Xu, J.; Deng, W. Performance prediction using high-order differential mathematical morphology gradient spectrum entropy and extreme learning machine. IEEE Trans. Instrum. Meas. 2019, 69, 4165–4172. [Google Scholar] [CrossRef]
- Čuljak, M.; Pandžić, H.; Havelka, J. Mathematical Morphology-Based Fault Detection in Radial DC Microgrids Considering Fault Current from VSC. IEEE Trans. Smart Grid 2022, 14, 2545–2557. [Google Scholar] [CrossRef]
- Gao, W.; Wai, R.J. Series arc fault detection of grid-connected PV system via SVD denoising and IEWT-TWSVM. IEEE J. Photovolt. 2021, 11, 1493–1510. [Google Scholar] [CrossRef]
- Gautam, S.; Brahma, S.M. Detection of high impedance fault in power distribution systems using mathematical morphology. IEEE Trans. Power Syst. 2012, 28, 1226–1234. [Google Scholar] [CrossRef]
- Charfi, F.; Sellami, F.; Al-Haddad, K. Fault diagnostic in power system using wavelet transforms and neural networks. In Proceedings of the 2006 IEEE International Symposium on Industrial Electronics, Montréal, QC, Canada, 9–13 July 2006; Volume 2, pp. 1143–1148. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, D.; Wang, X.; Yan, Y. Forward engineering of local load control for primary frequency and voltage regulation. Electr. Power Syst. Res. 2023, 223, 109472. [Google Scholar] [CrossRef]
- Wang, X.B.; Luo, L.; Tang, L.; Yang, Z.X. Automatic Representation and Detection of Fault Bearings in In-wheel Motors under Variable Load Conditions. Adv. Eng. Inform. 2021, 49, 101321. [Google Scholar] [CrossRef]
- Wang, X.B.; Yang, Z.X.; Yan, X.A. Novel Particle Swarm Optimization-based Variational Mode Decomposition Method for the Fault Diagnosis of Complex Rotating Machinery. IEEE/ASME Trans. Mechatron. 2017, 23, 68–79. [Google Scholar] [CrossRef]
- Mai, W.; Phung, B.; Ambikairajah, E. Detection of high impedance faults in medium voltage distribution networks. In Proceedings of the 2012 10th International Power & Energy Conference (IPEC), Ho Chi Minh, Vietnam, 12–14 December 2012; pp. 562–567. [Google Scholar] [CrossRef]
Detection Method | Key Techniques | Reference |
---|---|---|
Arc light, arc sound, and electromagnetic radiation | Similarity of the steady burning arc spectrum | [16] |
Fourth-order Hilbert curve fractal antenna | [17] | |
Volt-ampere, current sag, and power spectral of arc faults | [18] | |
Reception of electromagnetic radiation signals with comparable characteristic frequencies | [19] | |
Planar localization method requiring two detection points | [20] | |
Time frequency domain characteristics of arc current and voltage | Examination of current decrease rate, current change average rate, and standard deviation of the AC line current and voltage | [25] |
Impedance of fault arcs through a small-signal model to determine resonance frequencies | [26] | |
High-frequency component of normalized DC voltage to extract arc fault features | [28] | |
Using loop current signatures and quantificational evaluations to establish optimal detection variables | [29] | |
Learning based pattern recognition algorithm | A multi-input CNN model with squeeze-and-excitation and inception networks | [35] |
A quantum probability model with Tsallis entropy | [36] | |
Adaptive threshold model with AMSSS and PCA | [37] | |
A comprehensive detection strategy based on voltage characteristic energy amplitude and phase mapping distribution distance | [38] | |
GASF-GAN-CNN based transient current identification | [39] | |
CNN-SVM based feature extraction and classification | [40] | |
Mathematical morphology | Mathematical morphology denoising filters and local measurements | [43] |
Mathematical morphology modified empirical wavelet transform algorithm | [44] | |
Detecting high impedance faults using mathematical morphology (MM) | [45] | |
Ours | RNN-based mathematical morphology with higher accuracy in recognition | — |
Name | Operational Formula | Remark |
---|---|---|
Open operation | Filter the peak noise above the signal | |
Closed operation | Suppress the trough noise below the signal | |
Open-close operation | The output amplitude is small | |
Closed-open operation | The output range is too large | |
Top-hat operator | Detection crest | |
Bottom-hat operator | Detection trough | |
Peak-valley probe operator | Detect peak points and peak and valley points | |
Adaptive morphological filtering | Open-close and closed-open weighting coefficient adaptive and structural element adaptive | |
Morphological gradient calculation (MG) | Highlight the edge information | |
Multi-resolution Morphological Gradient Computing(MMG) | More detailed transformations are made for rising and falling edges to show more subtle changes in the signal | |
Cascade Multi-resolution Morphological Gradient Computing (SMMG) | The transient characteristics of the signal which are not obvious can be enhanced, and the generalized multiresolution gradient transform can be derived by increasing the width of structural elements | |
Multiscale morphology morphological spectrum | The multi-scale corrosion operation, expansion operation, open operation, and close operation are derived from the shape quantity distribution curve | Time domain transformation method based on multi-scale morphological analysis |
Group | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Normal | 0.0013 | 0.0010 | 0.0015 | 0.0013 | 0.0014 |
Arc Fault | 0.0086 | 0.0062 | 0.0072 | 0.0097 | 0.0066 |
Group | 6 | 7 | 8 | 9 | 10 |
Normal | 0.0014 | 0.0017 | 0.0032 | 0.0024 | 0.0035 |
Arc Fault | 0.0072 | 0.0059 | 0.0098 | 0.0069 | 0.0078 |
Group | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Normal | 4.08 | 9.06 | 5.27 | 1.75 | 2.04 | 2.78 | 8.01 | 1.39 | 9.05 | 8.23 |
Arc Fault | 46.8 | 63.0 | 91.8 | 13.5 | 48.1 | 75.0 | 151 | 70.5 | 78.4 | 66.3 |
Loss | Accuracy | |
---|---|---|
Training set | 0.0531 | 0.9822 |
Test set | 0.0527 | 0.9824 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, L.; Lu, C.; Li, C.; Xu, Y.; Zhang, J.; Liu, L.; Liu, W.; Wang, X. Arc Detection of Photovoltaic DC Faults Based on Mathematical Morphology. Machines 2024, 12, 134. https://doi.org/10.3390/machines12020134
Song L, Lu C, Li C, Xu Y, Zhang J, Liu L, Liu W, Wang X. Arc Detection of Photovoltaic DC Faults Based on Mathematical Morphology. Machines. 2024; 12(2):134. https://doi.org/10.3390/machines12020134
Chicago/Turabian StyleSong, Lei, Chunguang Lu, Chen Li, Yongjin Xu, Jiangming Zhang, Lin Liu, Wei Liu, and Xianbo Wang. 2024. "Arc Detection of Photovoltaic DC Faults Based on Mathematical Morphology" Machines 12, no. 2: 134. https://doi.org/10.3390/machines12020134
APA StyleSong, L., Lu, C., Li, C., Xu, Y., Zhang, J., Liu, L., Liu, W., & Wang, X. (2024). Arc Detection of Photovoltaic DC Faults Based on Mathematical Morphology. Machines, 12(2), 134. https://doi.org/10.3390/machines12020134