Unveiling the Black Box: A Unified XAI Framework for Signal-Based Deep Learning Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Shapley Values
2.2. SHapley Additive exPlanation Values
3. The Proposed Model Explainer
- Feature Extraction: In this initial step, various signal processing techniques, including time–frequency domains and Fourier and wavelet analyses, are used to uncover hidden patterns. This aims to increase both the accuracy and clarity of the DL model.
- Fault Diagnosis and Collision Detection: This step involves creating and training a dual-directional Convolutional Long Short-Term Memory (CLSTM) structure using the extracted features from the first step.
- XAI-Based Model Optimization: This part of the process utilizes SHAP values to remove less useful features, simplifying the data and making the model easier to implement in real-time settings, thus assisting practitioners in enhancing the model’s performance.
- Signal-Based CM Interpretation System: This final step aims to visually present the model’s findings, helping operators grasp the diagnostic decisions made by the DL model.
4. Experimental Results and Discussion
4.1. Dataset Descriptions
4.2. Application I: Model Optimization/Feature Selection
4.3. Application II: Evaluating Generative Models
4.4. Application III: Model Explainer and Training
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shojaeinasab, A.; Charter, T.; Jalayer, M.; Khadivi, M.; Ogunfowora, O.; Raiyani, N.; Yaghoubi, M.; Najjaran, H. Intelligent manufacturing execution systems: A systematic review. J. Manuf. Syst. 2022, 62, 503–522. [Google Scholar] [CrossRef]
- Carvalho, D.; Pereira, E.; Cardoso, J. Machine learning interpretability: A survey on methods and metrics. Electronics 2019, 8, 832. [Google Scholar] [CrossRef]
- Hofmann, D.; Phares, D. Remote monitoring and diagnostics of large rotating machinery. In Proceedings of the Cement Industry Technical Conference, 2003. Conference Record. IEEE-IAS/PCA 2003, Dallas, TX, USA, 4–9 May 2003; pp. 47–55. Available online: http://ieeexplore.ieee.org/document/1204708/ (accessed on 15 December 2023).
- Li, F.; Xiao, J.; Huang, W.; Cai, S. Research on the Intelligent Obstacle Avoidance and Path Planning Strategy of UAV based on Multi-Sensor Fusion. In Proceedings of the 2022 IEEE International Conference On Advances In Electrical Engineering and Computer Applications (AEECA), Dalian, China, 20–21 August 2022; pp. 628–632. [Google Scholar]
- Nguyen, V.; Case, J. Compensation of electrical current drift in human–robot collision. Int. J. Adv. Manuf. Technol. 2022, 123, 2783–2791. [Google Scholar] [CrossRef]
- Heo, Y.; Kim, D.; Lee, W.; Kim, H.; Park, J.; Chung, W. Collision detection for industrial collaborative robots: A deep learning approach. IEEE Robot. Autom. Lett. 2019, 4, 740–746. [Google Scholar] [CrossRef]
- Li, P.; Anduv, B.; Zhu, X.; Jin, X.; Du, Z. Across working conditions fault diagnosis for chillers based on IoT intelligent agent with deep learning model. Energy Build. 2022, 268, 112188. [Google Scholar] [CrossRef]
- Azevedo, H.; Araújo, A.; Bouchonneau, N. A review of wind turbine bearing condition monitoring: State of the art and challenges. Renew. Sustain. Energy Rev. 2016, 56, 368–379. [Google Scholar] [CrossRef]
- Jalayer, M.; Orsenigo, C.; Vercellis, C. Fault detection and diagnosis for rotating machinery: A model based on convolutional lstm, fast fourier and continuous wavelet transforms. Comput. Ind. 2021, 125, 103378. [Google Scholar] [CrossRef]
- Safizadeh, M.; Latifi, S. Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell. Inf. Fusion 2014, 18, 1–8. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Z.; Song, S.; Li, F.; Chen, C.L.P. Twin Broad Learning System for Fault Diagnosis of Rotating Machinery. IEEE Trans. Instrum. Meas. 2023, 72, 3510712. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Wang, G.; Kumar, A.; Sun, W.; Xiang, J. Semi-Supervised Multiscale Permutation Entropy-Enhanced Contrastive Learning for Fault Diagnosis of Rotating Machinery. IEEE Trans. Instrum. Meas. 2023, 72, 3525610. [Google Scholar] [CrossRef]
- Antwarg, L.; Miller, R.; Shapira, B.; Rokach, L. Explaining anomalies detected by autoencoders using Shapley Additive Explanations. Expert Syst. Appl. 2021, 186, 115736. [Google Scholar] [CrossRef]
- Cakiroglu, C.; Demir, S.; Ozdemir, M.; Aylak, B.; Sariisik, G.; Abualigah, L. Data-driven Interpretable Ensemble Learning Methods for the Prediction of Wind Turbine Power Incorporating SHAP Analysis. Expert Syst. Appl. 2024, 237, 121464. [Google Scholar] [CrossRef]
- Ragab, A.; El-Koujok, M.; Poulin, B.; Amazouz, M.; Yacout, S. Fault diagnosis in industrial chemical processes using interpretable patterns based on Logical Analysis of Data. Expert Syst. Appl. 2018, 95, 368–383. [Google Scholar] [CrossRef]
- Zhou, T.; Han, T.; Droguett, E. Towards trustworthy machine fault diagnosis: A probabilistic Bayesian deep learning framework. Reliab. Eng. Syst. Saf. 2022, 224, 108525. [Google Scholar] [CrossRef]
- Busch, M.; Schnoes, F.; Elsharkawy, A.; Zaeh, M. Methodology for model-based uncertainty quantification of the vibrational properties of machining robots. Robot. Comput.-Integr. Manuf. 2022, 73, 102243. [Google Scholar] [CrossRef]
- Xiao, Y.; Shao, H.; Feng, M.; Han, T.; Wan, J.; Liu, B. Towards trustworthy rotating machinery fault diagnosis via attention uncertainty in Transformer. J. Manuf. Syst. 2023, 70, 186–201. [Google Scholar] [CrossRef]
- Shukla, S.; Yadav, R.; Sharma, J.; Khare, S. Analysis of statistical features for fault detection in ball bearing. In Proceedings of the 2015 IEEE International Conference On Computational Intelligence And Computing Research (ICCIC), Madurai, India, 10–12 December 2015; pp. 1–7. [Google Scholar]
- Behzad, M.; Bastami, A.; Mba, D. Rolling bearing fault detection by short-time statistical features. Proc. Inst. Mech. Eng. Part J. Process. Mech. Eng. 2012, 226, 229–237. [Google Scholar] [CrossRef]
- Wu, S.; Wu, P.; Wu, C.; Ding, J.; Wang, C. Bearing fault diagnosis based on multiscale permutation entropy and support vector machine. Entropy 2012, 14, 1343–1356. [Google Scholar] [CrossRef]
- Zhang, Z.; Qian, K.; Schuller, B.; Wollherr, D. An online robot collision detection and identification scheme by supervised learning and bayesian decision theory. IEEE Trans. Autom. Sci. Eng. 2020, 18, 1144–1156. [Google Scholar] [CrossRef]
- Huang, N.; Shen, Z.; Long, S.; Wu, M.; Shih, H.; Zheng, Q.; Yen, N.; Tung, C.; Liu, H. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London. Ser. Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Lei, Y.; Lin, J.; He, Z.; Zuo, M. A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 2013, 35, 108–126. [Google Scholar] [CrossRef]
- Silva, A.; Zarzo, A.; González, J.M.M.; Munoz-Guijosa, J. Early fault detection of single-point rub in gas turbines with accelerometers on the casing based on continuous wavelet transform. J. Sound Vib. 2020, 487, 115628. [Google Scholar] [CrossRef]
- Sabir, R.; Rosato, D.; Hartmann, S.; Guehmann, C. LSTM based bearing fault diagnosis of electrical machines using motor current signal. In Proceedings of the 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019; pp. 613–618. [Google Scholar]
- Netsanet, S.; Zhang, J.; Zheng, D. Bagged decision trees based scheme of microgrid protection using windowed fast fourier and wavelet transforms. Electronics 2018, 7, 61. [Google Scholar] [CrossRef]
- Jalayer, M.; Kaboli, A.; Orsenigo, C.; Vercellis, C. Fault detection and diagnosis with imbalanced and noisy data: A hybrid framework for rotating machinery. Machines 2022, 10, 237. [Google Scholar] [CrossRef]
- Shi, J.; Peng, D.; Peng, Z.; Zhang, Z.; Goebel, K.; Wu, D. Planetary gearbox fault diagnosis using bidirectional-convolutional LSTM networks. Mech. Syst. Signal Process. 2022, 162, 107996. [Google Scholar] [CrossRef]
- Jalayer, M.; Shojaeinasab, A.; Najjaran, H. A Model Identification Forensics Approach for Signal-Based Condition Monitoring. In International Conference On Flexible Automation and Intelligent Manufacturing; Springer Nature: Cham, Switzerland, 2023; pp. 12–19. [Google Scholar]
- Belaid, M.K.; Mekki, D.E.; Rabus, M.; Hüllermeier, E. Optimizing Data Shapley Interaction Calculation from O (2n) to O (tn2) for KNN models. arXiv 2023, arXiv:2304.01224. [Google Scholar]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. Advances in Neural Information Processing Systems. 2017, Volume 30. Available online: https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html (accessed on 20 January 2024).
- Lu, C.; Wang, Z.; Qin, W.; Ma, J. Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification. Signal Process. 2017, 130, 377–388. [Google Scholar] [CrossRef]
- Mao, W.; Feng, W.; Liu, Y.; Zhang, D.; Liang, X. A new deep auto-encoder method with fusing discriminant information for bearing fault diagnosis. Mech. Syst. Signal Process. 2021, 150, 107233. [Google Scholar] [CrossRef]
- Shen, C.; Qi, Y.; Wang, J.; Cai, G.; Zhu, Z. An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder. Eng. Appl. Artif. Intell. 2018, 76, 170–184. [Google Scholar] [CrossRef]
- Jia, F.; Lei, Y.; Guo, L.; Lin, J.; Xing, S. A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines. Neurocomputing 2018, 272, 619–628. [Google Scholar] [CrossRef]
- Ahang, M.; Jalayer, M.; Shojaeinasab, A.; Ogunfowora, O.; Charter, T.; Najjaran, H. Synthesizing rolling bearing fault samples in new conditions: A framework based on a modified CGAN. Sensors 2022, 22, 5413. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shojaeinasab, A.; Jalayer, M.; Baniasadi, A.; Najjaran, H. Unveiling the Black Box: A Unified XAI Framework for Signal-Based Deep Learning Models. Machines 2024, 12, 121. https://doi.org/10.3390/machines12020121
Shojaeinasab A, Jalayer M, Baniasadi A, Najjaran H. Unveiling the Black Box: A Unified XAI Framework for Signal-Based Deep Learning Models. Machines. 2024; 12(2):121. https://doi.org/10.3390/machines12020121
Chicago/Turabian StyleShojaeinasab, Ardeshir, Masoud Jalayer, Amirali Baniasadi, and Homayoun Najjaran. 2024. "Unveiling the Black Box: A Unified XAI Framework for Signal-Based Deep Learning Models" Machines 12, no. 2: 121. https://doi.org/10.3390/machines12020121
APA StyleShojaeinasab, A., Jalayer, M., Baniasadi, A., & Najjaran, H. (2024). Unveiling the Black Box: A Unified XAI Framework for Signal-Based Deep Learning Models. Machines, 12(2), 121. https://doi.org/10.3390/machines12020121