Unmanned Ground Vehicle for Identifying Trees Infested with Bark Beetles
Abstract
1. Introduction
2. Mathematical Model and Control Design
2.1. Dynamical Model
2.2. Control Algorithm
3. Numerical Simulations
4. Experimental Setup
4.1. Obstacle Avoidance
BendyRuler Algorithm
4.2. Resin Due to Bark Beetles Identification
- True positives (TPs): 8 → The model correctly detected 8 instances of the tree class.
- False negatives (FNs): 1 → The model did not detect 1 instance of the tree class and misclassified it as resin.
- False positives (FPs): 1 → The model misclassified 1 instance of resin as a tree.
- True negatives (TNs): 9 → The model correctly classified 9 instances of the resin class.
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UAV | unmanned aerial vehicle |
UGV | unmanned ground vehicle |
IMU | inertial measurement unit |
I2C | inter-integrated circuit |
UART | universal asynchronous receiver-transmitter |
CAN | controller area network |
SPI | serial peripheral interface |
ADC | analog-to-digital converter |
LiDAR | light detection and ranging |
GPS | global positioning system |
GNSS | global navigation satellite System |
PD | proportional–derivative |
References
- Sternberg, T.; Rueff, H.; Middleton, N. Contraction of the Gobi desert, 2000–2012. Remote Sens. 2015, 7, 1346–1358. [Google Scholar] [CrossRef]
- Asadzadeh, S.; de Oliveira, W.J.; de Souza Filho, C.R. UAV-based remote sensing for the petroleum industry and environmental monitoring: State-of-the-art and perspectives. J. Pet. Sci. Eng. 2022, 208, 109633. [Google Scholar] [CrossRef]
- Huo, L.; Persson, H.J.; Lindberg, E. Early detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS). Remote Sens. Environ. 2021, 255, 112240. [Google Scholar]
- Bárta, V.; Lukeš, P.; Homolová, L. Early detection of bark beetle infestation in Norway spruce forests of Central Europe using Sentinel-2. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102335. [Google Scholar] [CrossRef]
- Ortiz, S.M.; Breidenbach, J.; Kändler, G. Early detection of bark beetle green attack using TerraSAR-X and RapidEye data. Remote Sens. 2013, 5, 1912–1931. [Google Scholar] [CrossRef]
- Gomez, D.F.; Ritger, H.M.; Pearce, C.; Eickwort, J.; Hulcr, J. Ability of remote sensing systems to detect bark beetle spots in the southeastern US. Forests 2020, 11, 1167. [Google Scholar] [CrossRef]
- Kautz, M.; Feurer, J.; Adler, P. Early detection of bark beetle (Ips typographus) infestations by remote sensing—A critical review of recent research. For. Ecol. Manag. 2024, 556, 121595. [Google Scholar] [CrossRef]
- Li, Y.; Johnson, A.J.; Gao, L.; Wu, C.; Hulcr, J. Two new invasive Ips bark beetles (Coleoptera: Curculionidae) in mainland China and their potential distribution in Asia. Pest Manag. Sci. 2021, 77, 4000–4008. [Google Scholar] [CrossRef]
- Fettig, C.J.; Hilszczański, J. Management strategies for bark beetles in conifer forests. In Bark Beetles; Elsevier: Amsterdam, The Netherlands, 2015; pp. 555–584. [Google Scholar]
- Marais, G.C.; Stratton, I.C.; Hulcr, J.; Johnson, A.J. Progress in Developing a Bark Beetle Identification Tool. bioRxiv 2024. [Google Scholar] [CrossRef]
- Gitau, C.; Bashford, R.; Carnegie, A.; Gurr, G. A review of semiochemicals associated with bark beetle (Coleoptera: Curculionidae: Scolytinae) pests of coniferous trees: A focus on beetle interactions with other pests and their associates. For. Ecol. Manag. 2013, 297, 1–14. [Google Scholar] [CrossRef]
- Victor, S.; Mykhailo, H.; Samuli, J. An intelligent system for determining the degree of tree bark beetle damage based on the use of generative-adversarial neural networks. Plant-Environ. Interact. 2024, 5, e70015. [Google Scholar] [CrossRef] [PubMed]
- Kanaskie, C.R.; Routhier, M.R.; Fraser, B.T.; Congalton, R.G.; Ayres, M.P.; Garnas, J.R. Early Detection of Southern Pine Beetle Attack by UAV-Collected Multispectral Imagery. Remote Sens. 2024, 16, 2608. [Google Scholar] [CrossRef]
- Turkulainen, E.; Honkavaara, E.; Näsi, R.; Oliveira, R.A.; Hakala, T.; Junttila, S.; Karila, K.; Koivumäki, N.; Pelto-Arvo, M.; Tuviala, J.; et al. Comparison of deep neural networks in the classification of bark beetle-induced spruce damage using UAS images. Remote Sens. 2023, 15, 4928. [Google Scholar] [CrossRef]
- Godinez-Garrido, G.; Gonzalez-Islas, J.C.; Gonzalez-Rosas, A.; Flores, M.U.; Miranda-Gomez, J.M.; Gutierrez-Sanchez, M.d.J. Estimation of Damaged Regions by the Bark Beetle in a Mexican Forest Using UAV Images and Deep Learning. Sustainability 2024, 16, 10731. [Google Scholar] [CrossRef]
- Klouček, T.; Modlinger, R.; Zikmundová, M.; Kycko, M.; Komárek, J. Early detection of bark beetle infestation using UAV-borne multispectral imagery: A case study on the spruce forest in the Czech Republic. Front. For. Glob. Chang. 2024, 7, 1215734. [Google Scholar] [CrossRef]
- Hollaus, M.; Vreugdenhil, M. Radar satellite imagery for detecting bark beetle outbreaks in forests. Curr. For. Rep. 2019, 5, 240–250. [Google Scholar] [CrossRef]
- Klouček, T.; Komárek, J.; Surovỳ, P.; Hrach, K.; Janata, P.; Vašíček, B. The use of UAV mounted sensors for precise detection of bark beetle infestation. Remote Sens. 2019, 11, 1561. [Google Scholar] [CrossRef]
- Huo, L.; Lindberg, E.; Bohlin, J.; Persson, H.J. Assessing the detectability of European spruce bark beetle green attack in multispectral drone images with high spatial-and temporal resolutions. Remote Sens. Environ. 2023, 287, 113484. [Google Scholar] [CrossRef]
- Bozzini, A.; Brugnaro, S.; Morgante, G.; Santoiemma, G.; Deganutti, L.; Finozzi, V.; Battisti, A.; Faccoli, M. Drone-based early detection of bark beetle infested spruce trees differs in endemic and epidemic populations. Front. For. Glob. Chang. 2024, 7, 1385687. [Google Scholar] [CrossRef]
- Paczkowski, S.; Datta, P.; Irion, H.; Paczkowska, M.; Habert, T.; Pelz, S.; Jaeger, D. Evaluation of early bark beetle infestation localization by drone-based monoterpene detection. Forests 2021, 12, 228. [Google Scholar] [CrossRef]
- Östersund, M. Monitoring Bark Beetle Infestation Using Remote Sensing. Master’s Thesis, Insinööritieteiden Korkeakoulu, Espoo, Finland, 2022. [Google Scholar]
- Cibrián, T.D.; Qui nonez, F.S.; Qui nonez, B.S.; Olivo, M.J.; Aguilar, V.J. Manual para la Identificación, Manejo y Monitoreo de Insectos Descortezadores del Pino. Guía Práctica para la Identificación y Manejo de los Descortezadores del Pino; Comisión Nacional Forestal (Conafor): Zapopan, Mexico, 2015.
- Ferrenberg, S.; Kane, J.M.; Mitton, J.B. Resin duct characteristics associated with tree resistance to bark beetles across lodgepole and limber pines. Oecologia 2014, 174, 1283–1292. [Google Scholar] [CrossRef] [PubMed]
- Kautz, M.; Peter, F.J.; Harms, L.; Kammen, S.; Delb, H. Patterns, drivers and detectability of infestation symptoms following attacks by the European spruce bark beetle. J. Pest Sci. 2023, 96, 403–414. [Google Scholar] [CrossRef]
- Rajamani, R. Vehicle Dynamics and Control; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Lozano, R. (Ed.) Unmanned Aerial Vehicles: Embedded Control; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|
M | 2 kg | 5 m | 5 | ||
R | m | m | 4 | ||
L | m | m | 5 | ||
8 m | rad | 5 | |||
5 m | 4 | 4 |
Parameter | Value | Units |
---|---|---|
Standard deviation of lateral position | m | |
Standard deviation of longitudinal position | m | |
Standard deviation of lateral velocity | m/seg. | |
Standard deviation of longitudinal velocity | m/seg. |
Epoch | Iteration | Time Elapsed | Learn Rate | Training Loss | Validation Loss |
---|---|---|---|---|---|
1 | 1 | 00:00:27 | |||
3 | 50 | 00:06:22 | |||
6 | 100 | 00:11:23 | |||
9 | 150 | 00:16:37 | |||
12 | 200 | 00:21:17 | |||
14 | 250 | 00:25:43 | |||
15 | 270 | 00:27:29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores, J.; Salazar, S.; González-Hernández, I.; Rosales-Luengas, Y.; Lozano, R. Unmanned Ground Vehicle for Identifying Trees Infested with Bark Beetles. Machines 2024, 12, 944. https://doi.org/10.3390/machines12120944
Flores J, Salazar S, González-Hernández I, Rosales-Luengas Y, Lozano R. Unmanned Ground Vehicle for Identifying Trees Infested with Bark Beetles. Machines. 2024; 12(12):944. https://doi.org/10.3390/machines12120944
Chicago/Turabian StyleFlores, Jonathan, Sergio Salazar, Iván González-Hernández, Yukio Rosales-Luengas, and Rogelio Lozano. 2024. "Unmanned Ground Vehicle for Identifying Trees Infested with Bark Beetles" Machines 12, no. 12: 944. https://doi.org/10.3390/machines12120944
APA StyleFlores, J., Salazar, S., González-Hernández, I., Rosales-Luengas, Y., & Lozano, R. (2024). Unmanned Ground Vehicle for Identifying Trees Infested with Bark Beetles. Machines, 12(12), 944. https://doi.org/10.3390/machines12120944