Industrial Metabolism: A Multilevel Characterization for Designing Sustainable Manufacturing Systems
Abstract
:1. Introduction
2. Methodology
3. Background of the Literature
3.1. Analogies between Natural Systems and Manufacturing Systems
3.1.1. Biological Analogy of Industrial Metabolism
3.1.2. Ecosystem
3.1.3. Resilience in the Industrial Ecosystem
3.1.4. Trophic Chain
3.1.5. Trophic Network
3.1.6. Metabolic Pathways
3.1.7. Key Species
3.1.8. Industrial Habitat
3.1.9. Symbiosis at Eco-Industrial Park Level
3.2. Levels of Industrial Metabolism
3.2.1. Micro Level: Industrial Plant
3.2.2. Meso Level: Eco-Industrial Park
3.2.3. Macro Level: Region
4. Bioinspired Characterization of Industrial Metabolism
- Integration of biomimetic approaches: Nature-inspired strategies for efficient and sustainable industrial systems.
- Industrial trophic network analysis: Optimizing material and energy flows in the industrial supply chain.
- CE focus: Minimizing waste and maximizing resource value throughout the product life cycle.
- Efficiency and cyclicality of processes: Enhancing resource consumption and material reuse in manufacturing.
- Toxicity management: Safeguarding human health and the environment through sustainable material choices.
- Territorial contextualization: Contextual adaptation; tailoring strategies to local conditions for resource optimization and impact reduction.
- Continuous evaluation and monitoring: Monitoring performance to drive improvement in environmental, social, and economic aspects.
- Micro Level: At the micro level, the focus is on the manufacturing company itself, aiming to improve eco-efficiency through clean production practices and frameworks aligned with the product metabolism and manufacturing process in the context of a CE. The company seeks to optimize resource utilization, minimize waste generation, and enhance environmental performance within its own operations.
- Meso Level: Industrial ecology at the meso level fosters collaborative networks between companies and communities to optimize resource use, enhance energy and water management, and create symbiotic relationships based on the industrial food chain. This approach promotes sustainability, resilience, and reduced environmental impacts within the industrial ecosystem.
- Macro Level: The macro level aims to restructure regional or national industrial systems for circularity, efficiency, and sustainability. It involves analyzing import/export flows, identifying externalities in other economies, and implementing policies, regulatory frameworks, and strategic planning to support the transition to a circular economy, considering economic, social, and environmental factors.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Foster, J.B. Marx’s Ecology: Materialism and Nature; Monthly Review Press: New York, NY, USA, 2000; ISBN 1583670114. [Google Scholar]
- Ayres, R.U.; Ayres, L. A Handbook of Industrial Ecology; Edward Elgar Publishing: Cheltenham, UK, 2002; ISBN 978-1-84064-506-4. [Google Scholar]
- Foster, J.B. Marx’s Theory of Metabolic Rift: Classical Foundations for Environmental Sociology. Am. J. Sociol. 1999, 105, 366–405. [Google Scholar] [CrossRef]
- Napoletano, B.M.; Urquijo, P.S.; Paneque-Gálvez, J.; Clark, B.; York, R.; Franch-Pardo, I.; Méndez-Lemus, Y.; Vieyra, A. Has (Even Marxist) Political Ecology Really Transcended the Metabolic Rift? Geoforum 2018, 92, 92–95. [Google Scholar] [CrossRef]
- Wijkman, A.; Skånberg, K. The Circular Economy and Benefits for Society Jobs and Climate Clear Winners in an Economy Based on Renewable Energy and Resource Efficiency. Available online: https://www.clubofrome.org (accessed on 29 September 2018).
- Marx, K. Capital I; Vintage: New York, NY, USA, 1976; ISBN 84-7259-046-1. [Google Scholar]
- Wernick, K. Industrial Metabolism. In International Encyclopedia of the Social & Behavioral Sciences; Elsevier: Amsterdam, The Netherlands, 2001; pp. 7331–7333. ISBN 9780080430768. [Google Scholar]
- Wassenaar, T. Reconsidering Industrial Metabolism: From Analogy to Denoting Actuality. J. Ind. Ecol. 2015, 19, 715–727. [Google Scholar] [CrossRef]
- Ma, L.; Zhao, S.; Shi, L. Industrial Metabolism of Chlorine in a Chemical Industrial Park: The Chinese Case. J. Clean. Prod. 2016, 112, 4367–4376. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, N.; Hu, S. Industrial Metabolism of PVC in China: A Dynamic Material Flow Analysis. Resour. Conserv. Recycl. 2013, 73, 33–40. [Google Scholar] [CrossRef]
- Blew, R.D. On the Definition of Ecosystem. Bull. Ecol. Soc. Am. 1996, 77, 171–173. [Google Scholar] [CrossRef]
- Ayres, R.U. Industrial Metabolism: Work in Progress. In Theory and Implementation of Economic Models for Sustainable Development. Economy & Environment; Springer: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Braungart, M.; McDonough, W.; Bollinger, A. Cradle-to-Cradle Design: Creating Healthy Emissions—A Strategy for Eco-Effective Product and System Design. J. Clean. Prod. 2007, 15, 1337–1348. [Google Scholar] [CrossRef]
- Dai, T. A Study on Material Metabolism in Hebei Iron and Steel Industry Analysis. Resour. Conserv. Recycl. 2015, 95, 183–192. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy—A New Sustainability Paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Kirchherr, J.; Yang, N.H.N.; Schulze-Spüntrup, F.; Heerink, M.J.; Hartley, K. Conceptualizing the Circular Economy (Revisited): An Analysis of 221 Definitions. Resour. Conserv. Recycl. 2023, 194, 107001. [Google Scholar] [CrossRef]
- Jensen, P.D.; Basson, L.; Leach, M. Reinterpreting Industrial Ecology. J. Ind. Ecol. 2011, 15, 680–692. [Google Scholar] [CrossRef]
- Dewulf, J.; Van Langenhove, H. Integrating Industrial Ecology Principles into a Set of Environmental Sustainability Indicators for Technology Assessment. Resour. Conserv. Recycl. 2005, 43, 419–432. [Google Scholar] [CrossRef]
- Albu, A. Business Innovation Using Industrial Ecology. Metal. Int. 2011, 16, 28–31. [Google Scholar]
- Faut, L.; Soyeur, F.; Haezendonck, E.; Dooms, M.; de Langen, P.W. Ensuring Circular Strategy Implementation: The Development of Circular Economy Indicators for Ports. Marit. Transp. Res. 2023, 4, 100087. [Google Scholar] [CrossRef]
- Mayer, P. Guidelines for Writing a Review Article. Zur.-Based Plant Sci. Cent. 2009, 92, 2084–2090. [Google Scholar] [CrossRef]
- Marying, P. Qualitative Content Analysis. Forum Qual. Res. 2000, 1, 10. [Google Scholar] [CrossRef]
- Smith, T.M.; Smith, R.L. Ecología; Sexta Edic.; Pearson Educación: London, UK, 2007; ISBN 9788478290840. [Google Scholar]
- Ayres, R.U. Industrial Metabolism: Restructuring for Sustainable Development; The United Nations University: Jingumae, Tokyo, 1994; ISBN 92-808-0841-9. [Google Scholar]
- Rose, A. Economic Resilience to Natural and Man-Made Disasters: Multidisciplinary Origins and Contextual Dimensions. Environ. Hazards 2007, 7, 383–398. [Google Scholar] [CrossRef]
- Klee, R.J. Industrial Metabolism on Ice: A Case Study of Industrial Materials Flows and Environmental Management Alternatives for Scott Base, New Zealand’s Antarctic Research Station. J. R. Soc. N. Z. 2001, 31, 393–409. [Google Scholar] [CrossRef]
- Miller, G.T.; Spoolman, S. Essentials of Ecology, 5th ed.; Cengage Learning: Boston, MA, USA, 2011; ISBN 978-0-495-55795-1. [Google Scholar]
- Becker, T.; Beber, M.E.; Windt, K.; Hütt, M.-T.; Helbing, D. Flow Control by Periodic Devices: A Unifying Language for the Description of Traffic, Production, and Metabolic Systems. J. Stat. Mech. Theory Exp. 2011, 5, P05004. [Google Scholar] [CrossRef]
- Despeisse, M.; Ball, P.D.; Evans, S.; Levers, A. Industrial Ecology at Factory Level—A Conceptual Model. J. Clean. Prod. 2012, 31, 30–39. [Google Scholar] [CrossRef]
- Dér, A.; Hingst, L.; Nyhuis, P.; Herrmann, C. A Review of Frameworks, Methods and Models for the Evaluation and Engineering of Factory Life Cycles. Adv. Ind. Manuf. Eng. 2022, 4, 100083. [Google Scholar] [CrossRef]
- Jelinski, L.W.; Graedel, T.E.; Laudise, R.A.; McCall, D.W.; Patel, C.K. Industrial Ecology: Concepts and Approaches. Proc. Natl. Acad. Sci. USA 1992, 89, 793–797. [Google Scholar] [CrossRef] [PubMed]
- Butzer, S.; Schötz, S.; Petroschke, M.; Steinhilper, R. Development of a Performance Measurement System for International Reverse Supply Chains. Procedia CIRP 2017, 61, 251–256. [Google Scholar] [CrossRef]
- Tsujimoto, M.; Kajikawa, Y.; Tomita, J.; Matsumoto, Y. A Review of the Ecosystem Concept—Towards Coherent Ecosystem Design. Technol. Forecast. Soc. Change 2018, 136, 49–58. [Google Scholar] [CrossRef]
- Pulido Barrera, P.; Rosales Carreón, J.; de Boer, H.J. A Multi-Level Framework for Metabolism in Urban Energy Systems from an Ecological Perspective. Resour. Conserv. Recycl. 2018, 132, 230–238. [Google Scholar] [CrossRef]
- Horodytska, O.; Valdés, F.J.; Fullana, A. Plastic Flexible Films Waste Management—A State of Art Review. Waste Manag. 2018, 77, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Graedel, T.E. On the Concept of Industrial Ecology. Annu. Rev. Energy Environ. 1996, 21, 69–98. [Google Scholar] [CrossRef]
- Chen, L.; Wang, R.; Yang, J.; Shi, Y. Structural Complexity Analysis for Industrial Ecosystems: A Case Study on LuBei Industrial Ecosystem in China. Ecol. Complex. 2010, 7, 179–187. [Google Scholar] [CrossRef]
- Weber, J.L. Implementation of Land and Ecosystem Accounts at the European Environment Agency. Ecol. Econ. 2007, 61, 695–707. [Google Scholar] [CrossRef]
- Gu, Y.; Hu, L.; Zhang, H.; Hou, C. Innovation Ecosystem Research: Emerging Trends and Future Research. Sustainability 2021, 13, 11458. [Google Scholar] [CrossRef]
- Van Bueren, E.; van Bohemen, H.; Visscher, H. Sustainable Urban Environments; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 9789400712935. [Google Scholar]
- Peng, C.; Yuan, M.; Gu, C.; Peng, Z.; Ming, T. A Review of the Theory and Practice of Regional Resilience. Sustain. Cities Soc. 2017, 29, 86–96. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P. Resilience and Complexity: A Bibliometric Review and Prospects for Industrial Ecology. J. Ind. Ecol. 2015, 19, 236–251. [Google Scholar] [CrossRef]
- Bergström, J.; Van Winsen, R.; Henriqson, E. On the Rationale of Resilience in the Domain of Safety: A Literature Review. Reliab. Eng. Syst. Saf. 2015, 141, 131–141. [Google Scholar] [CrossRef]
- Fraccascia, L.; Giannoccaro, I.; Albino, V. Rethinking Resilience in Industrial Symbiosis: Conceptualization and Measurements. Ecol. Econ. 2017, 137, 148–162. [Google Scholar] [CrossRef]
- Korhonen, J.; Seager, T.P. Beyond Eco-Efficiency: A Resilience Perspective. Bus. Strategy Env. 2008, 17, 411–419. [Google Scholar] [CrossRef]
- Korhonen, J.; Snäkin, J.-P. Quantifying the Relationship of Resilience and Eco-Efficiency in Complex Adaptive Energy Systems. Ecol. Econ. 2015, 120, 83–92. [Google Scholar] [CrossRef]
- Gu, X.; Jin, X.; Ni, J.; Koren, Y. Manufacturing System Design for Resilience. Procedia CIRP 2015, 36, 135–140. [Google Scholar] [CrossRef]
- Gruner, R.L.; Power, D. Mimicking Natural Ecosystems to Develop Sustainable Supply Chains: A Theory of Socio-Ecological Intergradation. J. Clean. Prod. 2017, 149, 251–264. [Google Scholar] [CrossRef]
- Fan, Y.; Qiao, Q.; Fang, L. Network Analysis of Industrial Metabolism in Industrial Park—A Case Study of Huai’an Economic and Technological Development Area. J. Clean. Prod. 2017, 142, 1552–1561. [Google Scholar] [CrossRef]
- Muradian, R.; Walter, M.; Martinez-Alier, J. Hegemonic Transitions and Global Shifts in Social Metabolism: Implications for Resource-Rich Countries. Introduction to the Special Section. Glob. Environ. Change 2012, 22, 559–567. [Google Scholar] [CrossRef]
- Kharrazi, A.; Kraines, S.; Rovenskaya, E.; Avtar, R.; Iwata, S.; Yarime, M. Examining the Ecology of Commodity Trade Networks Using an Ecological Information-Based Approach: Toward Strategic Assessment of Resilience. J. Ind. Ecol. 2015, 19, 805–813. [Google Scholar] [CrossRef]
- Pan, S.C.; Hu, T.S.; You, J.X.; Chang, S.L. Characteristics and Influencing Factors of Economic Resilience in Industrial Parks. Heliyon 2023, 9, e14812. [Google Scholar] [CrossRef] [PubMed]
- Chopra, S.S.; Khanna, V. Understanding Resilience in Industrial Symbiosis Networks: Insights from Network Analysis. J. Env. Manag. 2014, 141, 86–94. [Google Scholar] [CrossRef]
- Marjaba, G.E.; Chidiac, S.E. Sustainability and Resiliency Metrics for Buildings—Critical Review. Build. Env. 2016, 101, 116–125. [Google Scholar] [CrossRef]
- Shah, S.S.; Babiceanu, R.F. Resilience Modeling and Analysis of Interdependent Infrastructure Systems. In Proceedings of the 2015 Systems and Information Engineering Design Symposium, SIEDS 2015, Charlottesville, VA, USA, 24 April 2015; pp. 154–158. [Google Scholar]
- Li, X.; Xiao, R. Analyzing Network Topological Characteristics of Eco-Industrial Parks from the Perspective of Resilience: A Case Study. Ecol. Indic. 2017, 74, 403–413. [Google Scholar] [CrossRef]
- Cerѐ, G.; Rezgui, Y.; Zhao, W. Critical Review of Existing Built Environment Resilience Frameworks: Directions for Future Research. Int. J. Disaster Risk Reduct. 2017, 25, 173–189. [Google Scholar] [CrossRef]
- Francis, R.; Bekera, B. A Metric and Frameworks for Resilience Analysis of Engineered and Infrastructure Systems. Reliab. Eng. Syst. Saf. 2014, 121, 90–103. [Google Scholar] [CrossRef]
- Aguiñaga, E.; Henriques, I.; Scheel, C.; Scheel, A. Building Resilience: A Self-Sustainable Community Approach to the Triple Bottom Line. J. Clean. Prod. 2017, 173, 186–196. [Google Scholar] [CrossRef]
- Liwarska-Bizukojc, E. The Conceptual Model of an Eco-Industrial Park Based upon Ecological Relationships. J. Clean. Prod. 2009, 17, 732–741. [Google Scholar] [CrossRef]
- Ruth, M. Advanced Introduction to Ecological Economics; Edward Elgar Publishing Ltd.: Cheltenham, UK, 2018; ISBN 1786433524. [Google Scholar]
- Côté, R.; Hall, J. Industrial Parks as Ecosystems. J. Clean. Prod. 1995, 3, 41–46. [Google Scholar] [CrossRef]
- Martín-Gómez, A.M.; Aguayo-González, F.; Marcos-Bárcena, M. Smart Eco-Industrial Parks: A Circular Economy Implementation Based on Industrial Metabolism. Resour. Conserv. Recycl. 2018, 135, 58–69. [Google Scholar] [CrossRef]
- Ulanowicz, R.E. Quantitative Methods for Ecological Network Analysis. Comput. Biol. Chem. 2004, 28, 321–339. [Google Scholar] [CrossRef] [PubMed]
- Borrett, S.R.; Sheble, L.; Moody, J.; Anway, E.C. Bibliometric Review of Ecological Network Analysis: 2010–2016. Ecol. Model. 2018, 382, 63–82. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, H.; Yang, Z.; Liu, G.; Su, M. Analysis of the Industrial Metabolic Processes for Sulfur in the Lubei (Shandong Province, China) Eco-Industrial Park. J. Clean. Prod. 2014, 96, 126–138. [Google Scholar] [CrossRef]
- Fiscus, D.A. Comparative Network Analysis toward Characterization of Systemic Organization for Human-Environmental Sustainability. Ecol. Model. 2009, 220, 3123–3132. [Google Scholar] [CrossRef]
- Song, X.; Geng, Y.; Dong, H.; Chen, W. Social Network Analysis on Industrial Symbiosis: A Case of Gujiao Eco-Industrial Park. J. Clean. Prod. 2018, 193, 414–423. [Google Scholar] [CrossRef]
- Layton, A.; Bras, B.; Weissburg, M. Improving Performance of Eco-Industrial Parks. Int. J. Sustain. Eng. 2017, 10, 250–259. [Google Scholar] [CrossRef]
- Rodríguez, M.T.T.; Andrade, L.C.; Bugallo, P.M.B.; Long, J.J.C. Combining LCT Tools for the Optimization of an Industrial Process: Material and Energy Flow Analysis and Best Available Techniques. J. Hazard. Mater. 2011, 192, 1705–1719. [Google Scholar] [CrossRef]
- Zhao, G.; Chen, J.; Zhang, H.; Jiang, Z. Industrial Metabolic Pathway Analysis and Flux Control for the Metallurgical System. Smart Innov. Syst. Technol. 2019, 155, 421–431. [Google Scholar] [CrossRef]
- Mustafin, A.; Kantarbayeva, A. Supply Chain Modeled as a Metabolic Pathway. Math. Model. Anal. 2018, 23, 473–491. [Google Scholar] [CrossRef]
- Pierie, F.; Bekkering, J.; Benders, R.M.J.; van Gemert, W.J.T.; Moll, H.C. A New Approach for Measuring the Environmental Sustainability of Renewable Energy Production Systems: Focused on the Modelling of Green Gas Production Pathways. Appl. Energy 2016, 162, 131–138. [Google Scholar] [CrossRef]
- Paine, R.T. A Note on Trophic Complexity and Community Stability. Am. Nat. 1969, 103, 91–93. [Google Scholar] [CrossRef]
- Reed, B. Shifting from ‘Sustainability’ to Regeneration. Build. Res. Inf. 2007, 35, 674–680. [Google Scholar] [CrossRef]
- Wells, P.E. Re-Writing the Ecological Metaphor: Part 1. Prog. Ind. Ecol. Int. J. 2006, 3, 114. [Google Scholar] [CrossRef]
- Sriram, K.; Ganesh, L.S.; Madhumathi, R. Inferring Principles for Sustainable Development of Business through Analogies from Ecological Systems. IIMB Manag. Rev. 2013, 25, 36–48. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, X.; Zhu, X.; Li, Y. Structure Stability Analysis of Industrial System and Construction of Eco-Industrial Chain: A Case Study of Lianyungang Xuwei New Area, China. Acta Ecol. Sin. 2014, 34, 255–260. [Google Scholar] [CrossRef]
- Levine, S.H. Products and Ecological Models A Population Ecology Perspective. J. Ind. Ecol. 2000, 3, 47–62. [Google Scholar] [CrossRef]
- Libralato, S.; Christensen, V.; Pauly, D. A Method for Identifying Keystone Species in Food Web Models. Ecol. Model. 2006, 195, 153–171. [Google Scholar] [CrossRef]
- Mukherjee, J.; Karan, S.; Chakrabarty, M.; Banerjee, A.; Rakshit, N.; Ray, S. An Approach towards Quantification of Ecosystem Trophic Status and Health through Ecological Network Analysis Applied in Hooghly-Matla Estuarine System, India. Ecol. Indic. 2018, 100, 55–68. [Google Scholar] [CrossRef]
- Cerceau, J.; Mat, N.; Junqua, G. Territorial Embeddedness of Natural Resource Management: A Perspective through the Implementation of Industrial Ecology. Geoforum 2018, 89, 29–42. [Google Scholar] [CrossRef]
- Albino, V.; Fraccascia, L.; Giannoccaro, I. Exploring the Role of Contracts to Support the Emergence of Self-Organized Industrial Symbiosis Networks: An Agent-Based Simulation Study. J. Clean. Prod. 2016, 112, 4353–4366. [Google Scholar] [CrossRef]
- Demartini, M.; Tonelli, F.; Govindan, K. An Investigation into Modelling Approaches for Industrial Symbiosis: A Literature Review and Research Agenda. Clean. Logist. Supply Chain. 2022, 3, 100020. [Google Scholar] [CrossRef]
- Chertow, M.R. Industrial Symbiosis. In Encyclopedia of Energy; Elsevier: Amsterdam, The Netherlands, 2004; pp. 407–415. ISBN 9780121764807. [Google Scholar]
- Butturi, M.A.; Lolli, F.; Sellitto, M.A.; Balugani, E.; Gamberini, R.; Rimini, B. Renewable Energy in Eco-Industrial Parks and Urban-Industrial Symbiosis: A Literature Review and a Conceptual Synthesis. Appl. Energy 2019, 255, 113825. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, H.; Chen, B.; Su, M.; Liu, G. A Review of Industrial Symbiosis Research: Theory and Methodology. Front. Earth Sci. 2015, 9, 91–104. [Google Scholar] [CrossRef]
- Perrucci, D.V.; Aktaş, C.B.; Sorentino, J.; Akanbi, H.; Curabba, J. A Review of International Eco-Industrial Parks for Implementation Success in the United States. City Environ. Interact. 2022, 16, 100086. [Google Scholar] [CrossRef]
- Jacobsen, N.B. Industrial Symbiosis in Kalundborg, Denmark: A Quantitative Assessment of Economic and Environmental Aspects. J. Ind. Ecol. 2008, 10, 239–255. [Google Scholar] [CrossRef]
- Wang, G.; Feng, X.; Khim Hoong, C. Symbiosis Analysis on Industrial Ecological System. Chin. J. Chem. Eng. 2014, 22, 690–698. [Google Scholar] [CrossRef]
- Fan, Y.; Qiao, Q.; Fang, L.; Yao, Y. Emergy Analysis on Industrial Symbiosis of an Industrial Park- A Case Study of Hefei Economic and Technological Development Area. J. Clean. Prod. 2017, 141, 791–798. [Google Scholar] [CrossRef]
- Cecelja, F.; Raafat, T.; Trokanas, N.; Innes, S.; Smith, M.; Yang, A.; Zorgios, Y.; Korkofygas, A.; Kokossis, A. E-Symbiosis: Technology-Enabled Support for Industrial Symbiosis Targeting Small and Medium Enterprises and Innovation. J. Clean. Prod. 2015, 98, 336–352. [Google Scholar] [CrossRef]
- Park, H.S.; Rene, E.R.; Choi, S.M.; Chiu, A.S.F. Strategies for Sustainable Development of Industrial Park in Ulsan, South Korea-From Spontaneous Evolution to Systematic Expansion of Industrial Symbiosis. J. Env. Manag. 2008, 87, 1–13. [Google Scholar] [CrossRef]
- Wen, Z.; Meng, X. Quantitative Assessment of Industrial Symbiosis for the Promotion of Circular Economy: A Case Study of the Printed Circuit Boards Industry in China’s Suzhou New District. J. Clean. Prod. 2015, 90, 211–219. [Google Scholar] [CrossRef]
- Illsley, B.; Jackson, T.; Lynch, B. Addressing Scottish Rural Fuel Poverty through a Regional Industrial Symbiosis Strategy for the Scottish Forest Industries Sector. Geoforum 2007, 38, 21–32. [Google Scholar] [CrossRef]
- Boons, F.; Chertow, M.; Park, J.; Spekkink, W.; Shi, H. Industrial Symbiosis Dynamics and the Problem of Equivalence. J. Ind. Ecol. 2016, 21, 938–952. [Google Scholar] [CrossRef]
- Liu, L.; Cui, Z.; Zhu, L. Industrial Metabolism of Carbon in an Alcohol Fermentation Factory. Fresenius Env. Bull. 2009, 18, 2040–2047. [Google Scholar]
- Yu, S.; Lin, F.; Zhao, G.; Chen, J.; Zhang, Z.; Zhang, H. Accurate Carbon Accounting Based on Industrial Metabolism for the Lean Management of Carbon Emission. Energy Rep. 2023, 9, 3872–3880. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, H.; Zhao, G.; Qureshi, A.S. A Novel Method for Estimating Carbon Emission Based on Industrial Metabolism: Blast Furnace Iron-Making with Micro Mechanism Model. Energy Rep. 2022, 8, 10125–10133. [Google Scholar] [CrossRef]
- Kósi, K.; Torma, A. Tracing Material Flows on Industrial Sites. Period. Polytech. Soc. Manag. Sci. 2005, 13, 133–155. [Google Scholar]
- de la Torre de Palacios, L.; Espí Rodríguez, J.A. Dematerialisation and Material Flow Analysis as Sustainability Indicators in the Extraction of Mineral Resources. Resour. Policy 2022, 79, 103131. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Song, X. Evolution Model with Time Lag Effects for the Coal Industrial Symbiosis System: A Case Study of Ordos, China. J. Clean. Prod. 2018, 187, 863–876. [Google Scholar] [CrossRef]
- Schneider, C.; Lechtenböhmer, S. Concepts and Pathways towards a Carbon-Neutral Heavy Industry in the German Federal State of North Rhine-Westphalia. In Proceedings of the Eceee Industrial Summer Study Proceedings; European Council for an Energy Efficient Economy (ECEEE), Berlin, Germany, 11–13 June 2018; pp. 443–453. [Google Scholar]
- Sun, Q.; Li, H.; Xu, B.; Cheng, L.; Wennersten, R. Analysis of Secondary Energy in China’s Iron and Steel Industry—An Approach of Industrial Metabolism. Int. J. Green. Energy 2016, 13, 793–802. [Google Scholar] [CrossRef]
- Hou, F.; Zhao, G.; Zhang, H.; Zhang, H.; Huang, C. Evaluating the Energy Properties of the Short-Flow Process Based on the Industrial Metabolism: A Case Study on the Metal 3D Printing of Hybrid Deposition and Micro Rolling (HDMR). J. Manuf. Process 2023, 97, 125–136. [Google Scholar] [CrossRef]
- Li, X.; Sun, W.; Zhao, L.; Cai, J. Material Metabolism and Environmental Emissions of BF-BOF and EAF Steel Production Routes. Miner. Process. Extr. Metall. Rev. 2018, 39, 50–58. [Google Scholar] [CrossRef]
- Chertow, M. The Source of Value: An Executive Briefing and Sourcebook on Industrial Ecology. J. Ind. Ecol. 1997, 1, 151–152. [Google Scholar] [CrossRef]
- Roberts, B.H. The Application of Industrial Ecology Principles and Planning Guidelines for the Development of Eco-Industrial Parks: An Australian Case Study. J. Clean. Prod. 2004, 12, 997–1010. [Google Scholar] [CrossRef]
- Batten, D.F. Fostering Industrial Symbiosis with Agent-Based Simulation and Participatory Modeling. J. Ind. Ecol. 2009, 13, 197–213. [Google Scholar] [CrossRef]
- Winans, K.; Kendall, A.; Deng, H. The History and Current Applications of the Circular Economy Concept. Renew. Sustain. Energy Rev. 2017, 68, 825–833. [Google Scholar] [CrossRef]
- Harpet, C.; Gully, E.; Blavot, C.; Mehu, J.; Bonnet, J. Seeking Industrial Synergies in the French Chemical Valley Territory: A Methodological Approach for Decision Support. Prog. Ind. Ecol. Int. J. 2013, 8, 92. [Google Scholar] [CrossRef]
- Dong, L.; Fujita, T.; Dai, M.; Geng, Y.; Ren, J.; Fujii, M.; Wang, Y.; Ohnishi, S. Towards Preventative Eco-Industrial Development: An Industrial and Urban Symbiosis Case in One Typical Industrial City in China. J. Clean. Prod. 2016, 114, 387–400. [Google Scholar] [CrossRef]
- Tröger, D.; Araneda, A.A.B.; Busnelli, R.; Yajnes, M.; Williams, F.; Braun, A.C. Exploring Eco-Industrial Development in the Global South: Recognizing Informal Waste-Picking as Urban-Industrial Symbiosis? Clean. Waste Syst. 2023, 5, 100096. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, H.; Guo, S. Evaluating the Comprehensive Benefit of Eco-Industrial Parks by Employing Multi-Criteria Decision Making Approach for Circular Economy. J. Clean. Prod. 2016, 142, 2262–2276. [Google Scholar] [CrossRef]
- Han, F.; Li, W.; Yu, F.; Cui, Z. Industrial Metabolism of Chlorine: A Case Study of a Chlor-Alkali Industrial Chain. Env. Sci. Pollut. Res. 2014, 21, 5810–5817. [Google Scholar] [CrossRef]
- Hu, Q.; Huang, H.; Kung, C.C. Ecological Impact Assessment of Land Use in Eco-Industrial Park Based on Life Cycle Assessment: A Case Study of Nanchang High-Tech Development Zone in China. J. Clean. Prod. 2021, 300, 126816. [Google Scholar] [CrossRef]
- Náray-Szabó, G.; Mika, L.T. Conservative Evolution and Industrial Metabolism in Green Chemistry. Green. Chem. 2018, 20, 2171–2191. [Google Scholar] [CrossRef]
- Han, F.; Yu, F.; Cui, Z. Industrial Metabolism of Copper and Sulfur in a Copper-Specific Eco-Industrial Park in China. J. Clean. Prod. 2016, 133, 459–466. [Google Scholar] [CrossRef]
- Tian, J.; Shi, H.; Chen, Y.; Chen, L. Assessment of Industrial Metabolisms of Sulfur in a Chinese Fine Chemical Industrial Park. J. Clean. Prod. 2012, 32, 262–272. [Google Scholar] [CrossRef]
- Wu, J.; Shi, L. Nitrogen Metabolism in Industrial Parks: A Case of Yixing Economic Development Zone. Acta Ecol. Sin. 2010, 30, 6208–6217. [Google Scholar]
- Tian, J.; Guo, Q.; Chen, Y.; Li, X.; Shi, H.; Chen, L. Study on Industrial Metabolism of Carbon in a Chinese Fine Chemical Industrial Park. Env. Sci. Technol. 2013, 47, 1048–1056. [Google Scholar] [CrossRef]
- Wu, J.; Shi, L. Phosphorus Metabolism in Industrial Parks: A Case Study of Yixing Economic Development Zone. Acta Ecol. Sin. 2010, 30, 2397–2405. [Google Scholar]
- Janssen, M.A.; Van Den Bergh, J.C.J.M.; Van Beukering, P.J.H.; Hoekstra, R. Changing Industrial Metabolism: Methods for Analysis. Popul. Env. 2001, 23, 139–156. [Google Scholar] [CrossRef]
- Brunner, P.H.; Helmut, R. Practical Handbook of Material Flow Analysis; CRC/Lewis: Boca Raton, FL, USA, 2004; ISBN 9781566706049. [Google Scholar]
- Loiseau, E.; Junqua, G.; Roux, P.; Bellon-Maurel, V. Environmental Assessment of a Territory: An Overview of Existing Tools and Methods. J. Env. Manag. 2012, 112, 213–225. [Google Scholar] [CrossRef]
- Bai, L.; Qiao, Q.; Li, Y.; Xie, M.; Wan, S.; Zhong, Q. Substance Flow Analysis of Production Process: A Case Study of a Lead Smelting Process. J. Clean. Prod. 2015, 104, 502–512. [Google Scholar] [CrossRef]
- Sendra, C.; Gabarrell, X.; Vicent, T. Material Flow Analysis Adapted to an Industrial Area. J. Clean. Prod. 2007, 15, 1706–1715. [Google Scholar] [CrossRef]
- Yuan, Z.; Sun, L.; Bi, J.; Wu, H.; Zhang, L. Phosphorus Flow Analysis of the Socioeconomic Ecosystem of Shucheng County, China. Ecol. Appl. 2011, 21, 2822–2832. [Google Scholar] [CrossRef]
- Yuan, Z.; Shi, J.; Wu, H.; Zhang, L.; Bi, J. Understanding the Anthropogenic Phosphorus Pathway with Substance Flow Analysis at the City Level. J. Env. Manag. 2011, 92, 2021–2028. [Google Scholar] [CrossRef]
- Bi, J.; Chen, Q.; Zhang, L.; Yuan, Z. Quantifying Phosphorus Flow Pathways Through Socioeconomic Systems at the County Level in China. J. Ind. Ecol. 2013, 17, 452–460. [Google Scholar] [CrossRef]
- Yamano, H.; Sakata, I. Supply Chain Dynamics beyond Optimization: Metabolism of Regional Inter-Firm Networks. Heliyon 2023, 9, e16104. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, X.; Wu, H.; Zhang, L.; Bi, J. Anthropogenic Phosphorus Flow Analysis of Lujiang County, Anhui Province, Central China. Ecol. Model. 2011, 222, 1534–1543. [Google Scholar] [CrossRef]
- Kumagai, S.; Lu, J.; Fukushima, Y.; Ohno, H.; Kameda, T.; Yoshioka, T. Diagnosing Chlorine Industrial Metabolism by Evaluating the Potential of Chlorine Recovery from Polyvinyl Chloride Wastes—A Case Study in Japan. Resour. Conserv. Recycl. 2018, 133, 354–361. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, T. Investigating Reasons for Differences in the Results of Environmental, Physical, and Hybrid Input-Output Models. J. Ind. Ecol. 2013, 17, 432–439. [Google Scholar] [CrossRef]
- Ščasný, M.; Kovanda, J.; Hák, T. Material Flow Accounts, Balances and Derived Indicators for the Czech Republic during the 1990s: Results and Recommendations for Methodological Improvements. Ecol. Econ. 2003, 45, 41–57. [Google Scholar] [CrossRef]
- Kovanda, J.; van de Sand, I.; Schütz, H.; Bringezu, S. Economy-Wide Material Flow Indicators: Overall Framework, Purposes and Uses and Comparison of Material Use and Resource Intensity of the Czech Republic, Germany and the EU-15. Ecol. Indic. 2012, 17, 88–98. [Google Scholar] [CrossRef]
- Kovanda, J.; Hak, T. Historical Perspectives of Material Use in Czechoslovakia in 1855–2007. Ecol. Indic. 2011, 11, 1375–1384. [Google Scholar] [CrossRef]
- Kovanda, J.; Havranek, M.; Hak, T. Calculation of the“Net Additions to Stock” Indicator for the Czech Republic Using a Direct Method. J. Ind. Ecol. 2007, 11, 140–154. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, T. Material Flows and Economic Growth in Developing China. J. Ind. Ecol. 2007, 11, 121–140. [Google Scholar] [CrossRef]
- Infante-Amate, J.; Soto, D.; Aguilera, E.; García-Ruiz, R.; Guzmán, G.; Cid, A.; de Molina, M.G. The Spanish Transition to Industrial Metabolism: Long-Term Material Flow Analysis (1860–2010). J. Ind. Ecol. 2015, 19, 866–876. [Google Scholar] [CrossRef]
- Soto, D.; Infante-Amate, J.; Guzmán, G.I.; Cid, A.; Aguilera, E.; García, R.; González de Molina, M. The Social Metabolism of Biomass in Spain, 1900–2008: From Food to Feed-Oriented Changes in the Agro-Ecosystems. Ecol. Econ. 2016, 128, 130–138. [Google Scholar] [CrossRef]
- Schaffartzik, A.; Mayer, A.; Gingrich, S.; Eisenmenger, N.; Loy, C.; Krausmann, F. The Global Metabolic Transition: Regional Patterns and Trends of Global Material Flows, 1950–2010. Glob. Environ. Change 2014, 26, 87–97. [Google Scholar] [CrossRef]
- McMillan, C.A.; Moore, M.R.; Keoleian, G.A.; Bulkley, J.W. Quantifying U.S. Aluminum in-Use Stocks and Their Relationship with Economic Output. Ecol. Econ. 2010, 69, 2606–2613. [Google Scholar] [CrossRef]
- Ciacci, L.; Werner, T.T.; Vassura, I.; Passarini, F. Backlighting the European Indium Recycling Potentials. J. Ind. Ecol. 2018. [CrossRef]
- Lennox, J.A.; Turner, G.; Hoffman, R.; McInnis, B. Modeling Basic Industries in the Australian Stocks and Flows Framework. J. Ind. Ecol. 2004, 8, 101–120. [Google Scholar] [CrossRef]
- Liu, Y.; Villalba, G.; Ayres, R.U.; Schroder, H. Global Phosphorus Flows and Environmental Impacts from a Consumption Perspective. J. Ind. Ecol. 2008, 12, 229–247. [Google Scholar] [CrossRef]
- Ma, S.; Hu, S.; Chen, D.; Zhu, B. A Case Study of a Phosphorus Chemical Firm’s Application of Resource Efficiency and Eco-Efficiency in Industrial Metabolism under Circular Economy. J. Clean. Prod. 2015, 87, 839–849. [Google Scholar] [CrossRef]
- Pauliuk, S.; Wood, R.; Hertwich, E.G. Dynamic Models of Fixed Capital Stocks and Their Application in Industrial Ecology. J. Ind. Ecol. 2015, 19, 104–116. [Google Scholar] [CrossRef]
- Gan, L.; Wan, X.; Ma, Y.; Lev, B. Efficiency Evaluation for Urban Industrial Metabolism through the Methodologies of Emergy Analysis and Dynamic Network Stochastic Block Model. Sustain. Cities Soc. 2023, 90, 104396. [Google Scholar] [CrossRef]
- Daniels, P.L. Approaches for Quantifying the Metabolism of Physical Economies: A Comparative Survey: Part II: Review of Individual Approaches. J. Ind. Ecol. 2002, 6, 65–88. [Google Scholar] [CrossRef]
- Schmidt, M. The Sankey Diagram in Energy and Material Flow Management. J. Ind. Ecol. 2008, 12, 82–94. [Google Scholar] [CrossRef]
- Keffer, C.; Shimp, R.; Lehni, M. Eco-Efficiency Indicators & Reporting, Report on the Status of the Project’s Work in Progress and Guideline for Pilot Application; WBCSD, Working Group on Eco-efficiency Metrics and Reporting: Geneva, Switzerland, 1999. [Google Scholar]
- Hoffren, J.; Apajalahti, E.L. Development of Eco-Efficiency in Metal Production in Finland. Prog. Ind. Ecol. Int. J. 2009, 6, 153. [Google Scholar] [CrossRef]
- Hoffren, J. Reconsidering Quantification of Eco-Efficiency: Application to a National Economy. Prog. Ind. Ecol. Int. J. 2006, 3, 538. [Google Scholar] [CrossRef]
- Hoffren, J. Development of Eco-Efficiency in Finnish Forest Industry: 1997-2007. Prog. Ind. Ecol. Int. J. 2010, 7, 163. [Google Scholar] [CrossRef]
- Dai, T.; Lu, Z. Analysis of Eco-Efficiency of Steel Industry. Dongbei Daxue Xuebao/J. Northeast. Univ. 2005, 26, 1168–1173. [Google Scholar]
- Hirschnitz-Garbers, M.; Tan, A.R.; Gradmann, A.; Srebotnjak, T. Key Drivers for Unsustainable Resource Use—Categories, Effects and Policy Pointers. J. Clean. Prod. 2016, 132, 13–31. [Google Scholar] [CrossRef]
- González de Molina, M.; Toledo, V. The Social Metabolism—A Socio-Ecological Theory of Historical Change; Springer: Cham, Switzerland, 2014; ISBN 978-3-319-06358-4. [Google Scholar]
- Zhang, Y. Urban Metabolism: A Review of Research Methodologies. Env. Pollut. 2013, 178, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Infante Amate, J.; González De Molina, M. “Sustainable de-Growth” in Agriculture and Food: An Agro-Ecological Perspective on Spain’s Agri-Food System (Year 2000). J. Clean. Prod. 2013, 38, 27–35. [Google Scholar] [CrossRef]
- Herrmann-Pillath, C. Energy, Growth, and Evolution: Towards a Naturalistic Ontology of Economics. Ecol. Econ. 2015, 119, 432–442. [Google Scholar] [CrossRef]
- Lu, Y.; Geng, Y.; Qian, Y.; Han, W.; McDowall, W.; Bleischwitz, R. Changes of Human Time and Land Use Pattern in One Mega City’s Urban Metabolism: A Multi-Scale Integrated Analysis of Shanghai. J. Clean. Prod. 2016, 133, 391–401. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Yang, N. Ecological Network Model Analysis of China’s Endosomatic and Exosomatic Societal Metabolism. Proc. Procedia Environ. Sci. 2010, 2, 1400–1406. [Google Scholar] [CrossRef]
- Ellen Macarthur Foundation. The Circular Model—Brief History and Schools of Thought; Ellen Macarthur Foundation: Isle of Wight, UK, 2013; pp. 1–4. [Google Scholar]
- Ávila-Gutiérrez, M.J.; Martín-Gómez, A.; Aguayo-González, F.; Córdoba-Roldán, A. Standardization Framework for Sustainability from Circular Economy 4.0. Sustainability 2019, 11, 6490. [Google Scholar] [CrossRef]
- Masi, D.; Day, S.; Godsell, J. Supply Chain Configurations in the Circular Economy: A Systematic Literature Review. Sustainability 2017, 9, 1602. [Google Scholar] [CrossRef]
- Ávila-Gutiérrez, M.J.; Martín-Gómez, A.; Aguayo-González, F.; Lama-Ruiz, J.R. Eco-Holonic 4.0 Circular Business Model to Conceptualize Sustainable Value Chain towards Digital Transition. Sustainability 2020, 12, 1889. [Google Scholar] [CrossRef]
Concept | Concept | ||
---|---|---|---|
Circular economy | 423 | Inter-/Intra-specific | 3 |
Industrial ecology | 894 | Eco-industrial park | 286 |
Analogy | 48 | Resilience | 135 |
Eco-efficiency | 258 | Ecological network | 65 |
Toxicity | 69 | Trophic chain | 24 |
Cyclicity/Circularity | 124 | Metabolic pathway | 25 |
Ecosystem | 597 | Habitat | 66 |
Symbiosis | 319 | Keystone species | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Gómez, A.M.; Ávila-Gutiérrez, M.J.; Lama-Ruiz, J.R.; Aguayo-González, F. Industrial Metabolism: A Multilevel Characterization for Designing Sustainable Manufacturing Systems. Machines 2024, 12, 16. https://doi.org/10.3390/machines12010016
Martín-Gómez AM, Ávila-Gutiérrez MJ, Lama-Ruiz JR, Aguayo-González F. Industrial Metabolism: A Multilevel Characterization for Designing Sustainable Manufacturing Systems. Machines. 2024; 12(1):16. https://doi.org/10.3390/machines12010016
Chicago/Turabian StyleMartín-Gómez, Alejandro M., María Jesús Ávila-Gutiérrez, Juan Ramón Lama-Ruiz, and Francisco Aguayo-González. 2024. "Industrial Metabolism: A Multilevel Characterization for Designing Sustainable Manufacturing Systems" Machines 12, no. 1: 16. https://doi.org/10.3390/machines12010016
APA StyleMartín-Gómez, A. M., Ávila-Gutiérrez, M. J., Lama-Ruiz, J. R., & Aguayo-González, F. (2024). Industrial Metabolism: A Multilevel Characterization for Designing Sustainable Manufacturing Systems. Machines, 12(1), 16. https://doi.org/10.3390/machines12010016