Sustainable Crop Protection via Robotics and Artificial Intelligence Solutions
Abstract
:1. Introduction
- To summarize the most recent and relevant literature in the domain of smart farming through robots.
- To highlight and stress the benefits of introducing an autonomous robotic ecosystem in the agricultural field.
- To reveal the technological challenges and barriers to introducing such solutions in this domain.
- To propose a conceptual framework for the realization of robotized systems in agricultural environments to help with their protection.
- To explore potential improvements in pesticide efficacy by providing timely pesticide delivery to targets.
- To investigate strategies for reducing the risk posed by pesticide applications to non-target organisms.
- To discuss the development of a decision support system for selecting low-risk pesticides among the available options.
2. Crop Justification
3. Related Works
4. Analysis of Agriculture Field Requirements
5. Benefits of Utilizing AI Methods in Crop Protection
6. Proposed Framework
6.1. Background and Use Case Scenario
6.2. Concept
6.3. Architecture
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmad, L.; Nabi, F. Agriculture 5.0: Artificial Intelligence, IoT and Machine Learning; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Ragazou, K.; Garefalakis, A.; Zafeiriou, E.; Passas, I. Agriculture 5.0: A new strategic management mode for a cut cost and an energy efficient agriculture sector. Energies 2022, 15, 3113. [Google Scholar]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar]
- Larsen, A.E.; Patton, M.; Martin, E.A. High highs and low lows: Elucidating striking seasonal variability in pesticide use and its environmental implications. Sci. Total Environ. 2019, 651, 828–837. [Google Scholar]
- Parlakidis, P.; Rodriguez, M.S.; Gikas, G.D.; Alexoudis, C.; Perez-Rojas, G.; Perez-Villanueva, M.; Carrera, A.P.; Fernández-Cirelli, A.; Vryzas, Z. Occurrence of Banned and Currently Used Herbicides, in Groundwater of Northern Greece: A Human Health Risk Assessment Approach. Int. J. Environ. Res. Public Health 2022, 19, 8877. [Google Scholar]
- Schebesta, H.; Candel, J.J. Game-changing potential of the EU’s Farm to Fork Strategy. Nat. Food 2020, 1, 586–588. [Google Scholar]
- Hensh, S.; Raheman, H. An unmanned wetland paddy seeder with mechatronic seed metering mechanism for precise seeding. Comput. Electron. Agric. 2022, 203, 107463. [Google Scholar]
- Nawar, S.; Corstanje, R.; Halcro, G.; Mulla, D.; Mouazen, A.M. Delineation of soil management zones for variable-rate fertilization: A review. Adv. Agron. 2017, 143, 175–245. [Google Scholar]
- Tsolakis, N.; Gasteratos, A. Sensor-Driven Human-Robot Synergy: A Systems Engineering Approach. Sensors 2023, 23, 21. [Google Scholar]
- Fountas, S.; Aggelopoulou, K.; Gemtos, T.A. Precision agriculture: Crop management for improved productivity and reduced environmental impact or improved sustainability. In Supply Chain Management for Sustainable Food Networks; Wiley: Hoboken, NJ, USA, 2015; pp. 41–65. [Google Scholar]
- Kim, N.; Lee, Y.W. Machine learning approaches to corn yield estimation using satellite images and climate data: A case of Iowa State. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2016, 34, 383–390. [Google Scholar]
- Kostavelis, I.; Charalampous, K.; Gasteratos, A.; Tsotsos, J.K. Robot navigation via spatial and temporal coherent semantic maps. Eng. Appl. Artif. Intell. 2016, 48, 173–187. [Google Scholar]
- Balaska, V.; Bampis, L.; Kansizoglou, I.; Gasteratos, A. Enhancing satellite semantic maps with ground-level imagery. Robot. Auton. Syst. 2021, 139, 103760. [Google Scholar]
- Balaska, V.; Bampis, L.; Gasteratos, A. Graph-based semantic segmentation. In Proceedings of the International Conference on Robotics in Alpe-Adria Danube Region, Patras, Greece, 6–8 June 2018; pp. 572–579. [Google Scholar]
- Torrecillas, C.; Martínez, C. Patterns of specialisation by country and sector in olive applications. Technol. Soc. 2022, 70, 102003. [Google Scholar]
- Giraldo, P.; Benavente, E.; Manzano-Agugliaro, F.; Gimenez, E. Worldwide research trends on wheat and barley: A bibliometric comparative analysis. Agronomy 2019, 9, 352. [Google Scholar]
- Sakurai, S.; Uchiyama, H.; Shimada, A.; Arita, D.; Taniguchi, R.I. Two-step Transfer Learning for Semantic Plant Segmentation. In Proceedings of the ICPRAM, Madeira, Portugal, 16–18 January 2018; pp. 332–339. [Google Scholar]
- Li, Y.; Zhan, X.; Liu, S.; Lu, H.; Jiang, R.; Guo, W.; Chapman, S.; Ge, Y.; Solan, B.; Ding, Y.; et al. Self-supervised plant phenotyping by combining domain adaptation with 3D plant model simulations: Application to wheat leaf counting at seedling stage. Plant Phenomics 2023, 5, 0041. [Google Scholar]
- Lu, X.; Zhou, J.; Yang, R.; Yan, Z.; Lin, Y.; Jiao, J.; Liu, F. Automated Rice Phenology Stage Mapping Using UAV Images and Deep Learning. Drones 2023, 7, 83. [Google Scholar]
- Qin, C.; Wang, J.; Wang, H.; Xue, Q.; Niu, R.; Lu, L. Practice of the cross-scale and high-precision eco-environment zoning regulation—“Three lines and one permit”. Environ. Impact Assess. Rev. 2023, 101, 107123. [Google Scholar]
- Jiang, G.; Grafton, M.; Pearson, D.; Bretherton, M.; Holmes, A. Integration of precision farming data and spatial statistical modelling to interpret field-scale maize productivity. Agriculture 2019, 9, 237. [Google Scholar]
- Balaska, V.; Bampis, L.; Katsavounis, S.; Gasteratos, A. Generating Graph-Inspired Descriptors by Merging Ground-Level and Satellite Data for Robot Localization. Cybern. Syst. 2022, 54, 697–715. [Google Scholar]
- Balaska, V.; Bampis, L.; Gasteratos, A. Self-localization based on terrestrial and satellite semantics. Eng. Appl. Artif. Intell. 2022, 111, 104824. [Google Scholar]
- Paul, R.K.; Das, T.; Yeasin, M. Ensemble of time series and machine learning model for forecasting volatility in agricultural prices. Natl. Acad. Sci. Lett. 2023, 46, 185–188. [Google Scholar]
- Kiruthiga, C.; Dharmarajan, K. Machine Learning in Soil Borne Diseases, Soil Data Analysis & Crop Yielding: A Review. In Proceedings of the 2023 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE), Bengaluru, India, 27–28 January 2023; pp. 702–706. [Google Scholar]
- Bandaia, K.; Gunasekaran, M. An Efficient Model for Predicting Future Price of Agricultural Commodities using K-Nearest Neighbors Algorithm Compared with Support Vector Machine Algorithm. In Proceedings of the 2022 3rd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 20–22 October 2022; pp. 858–861. [Google Scholar]
- Jain, N.; Kumar, A.; Garud, S.; Pradhan, V.; Kulkarni, P. Crop selection method based on various environmental factors using machine learning. Int. Res. J. Eng. Technol. IRJET 2017, 4, 1530–1533. [Google Scholar]
- Du, Z.; Yang, J.; Ou, C.; Zhang, T. Smallholder crop area mapped with a semantic segmentation deep learning method. Remote Sens. 2019, 11, 888. [Google Scholar]
- Grieve, B.D.; Duckett, T.; Collison, M.; Boyd, L.; West, J.; Yin, H.; Arvin, F.; Pearson, S. The challenges posed by global broadacre crops in delivering smart agri-robotic solutions: A fundamental rethink is required. Glob. Food Secur. 2019, 23, 116–124. [Google Scholar]
- An, Z.; Wang, C.; Raj, B.; Eswaran, S.; Raffik, R.; Debnath, S.; Rahin, S.A. Application of new technology of intelligent robot plant protection in ecological agriculture. J. Food Qual. 2022, 2022, 1257015. [Google Scholar]
- Krishnan, A.; Swarna, S.; Balasubramanya, H.S. Robotics, IoT, and AI in the automation of agricultural industry: A review. In Proceedings of the 2020 IEEE Bangalore Humanitarian Technology Conference (B-HTC), Vijiyapur, India, 8–10 October 2020; pp. 1–6. [Google Scholar]
- Mesías-Ruiz, G.A.; Pérez-Ortiz, M.; Dorado, J.; de Castro, A.I.; Peña, J.M. Boosting precision crop protection towards Agriculture 5.0 via machine learning and emerging technologies: A contextual review. Front. Plant Sci. 2023, 14, 1143326. [Google Scholar]
- Thakur, P.S.; Khanna, P.; Sheorey, T.; Ojha, A. Trends in vision-based machine learning techniques for plant disease identification: A systematic review. Expert Syst. Appl. 2022, 208, 118117. [Google Scholar]
- Ryo, M. Explainable artificial intelligence and interpretable machine learning for agricultural data analysis. Artif. Intell. Agric. 2022, 6, 257–265. [Google Scholar]
- Shruthi, U.; Nagaveni, V.; Raghavendra, B. A review on machine learning classification techniques for plant disease detection. In Proceedings of the 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 15–16 March 2019; pp. 281–284. [Google Scholar]
- Kothari, J.D. Plant Disease Identification using Artificial Intelligence: Machine Learning Approach. Int. J. Innov. Res. Comput. Commun. Eng. 2018, 7, 11082–11085. [Google Scholar]
- Rasmussen, J.; Nielsen, J.; Streibig, J.; Jensen, J.; Pedersen, K.; Olsen, S. Pre-harvest weed mapping of Cirsium arvense in wheat and barley with off-the-shelf UAVs. Precis. Agric. 2019, 20, 983–999. [Google Scholar]
- Zou, K.; Liao, Q.; Zhang, F.; Che, X.; Zhang, C. A segmentation network for smart weed management in wheat fields. Comput. Electron. Agric. 2022, 202, 107303. [Google Scholar]
- Gonzalez-de Soto, M.; Emmi, L.; Perez-Ruiz, M.; Aguera, J.; Gonzalez-de Santos, P. Autonomous systems for precise spraying–Evaluation of a robotised patch sprayer. Biosyst. Eng. 2016, 146, 165–182. [Google Scholar]
- El Jarroudi, M.; Kouadio, L.; El Jarroudi, M.; Junk, J.; Bock, C.; Diouf, A.A.; Delfosse, P. Improving fungal disease forecasts in winter wheat: A critical role of intra-day variations of meteorological conditions in the development of Septoria leaf blotch. Field Crop. Res. 2017, 213, 12–20. [Google Scholar]
- Tannous, M.; Stefanini, C.; Romano, D. A Deep-Learning-Based Detection Approach for the Identification of Insect Species of Economic Importance. Insects 2023, 14, 148. [Google Scholar]
- Zaza, C.; Bimonte, S.; Faccilongo, N.; La Sala, P.; Contò, F.; Gallo, C. A new decision-support system for the historical analysis of integrated pest management activities on olive crops based on climatic data. Comput. Electron. Agric. 2018, 148, 237–249. [Google Scholar]
- Rempelos, L.; Barański, M.; Sufar, E.K.; Gilroy, J.; Shotton, P.; Leifert, H.; Średnicka-Tober, D.; Hasanaliyeva, G.; Rosa, E.A.; Hajslova, J.; et al. Effect of climatic conditions, and agronomic practices used in organic and conventional crop production on yield and nutritional composition parameters in potato, cabbage, lettuce and onion; results from the long-term NFSC-trials. Agronomy 2023, 13, 1225. [Google Scholar]
- Khan, N.; Ray, R.L.; Sargani, G.R.; Ihtisham, M.; Khayyam, M.; Ismail, S. Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture. Sustainability 2021, 13, 4883. [Google Scholar]
- Ghatrehsamani, S.; Jha, G.; Dutta, W.; Molaei, F.; Nazrul, F.; Fortin, M.; Bansal, S.; Debangshi, U.; Neupane, J. Artificial intelligence tools and techniques to combat herbicide resistant weeds—A review. Sustainability 2023, 15, 1843. [Google Scholar]
- Shaikh, T.A.; Rasool, T.; Lone, F.R. Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Comput. Electron. Agric. 2022, 198, 107119. [Google Scholar]
- Wei, K.; Chen, B.; Zhang, J.; Fan, S.; Wu, K.; Liu, G.; Chen, D. Explainable deep learning study for leaf disease classification. Agronomy 2022, 12, 1035. [Google Scholar]
Crop/pests/pathogens/weeds | Olives/Bactrocera oleae, Prays oleae, Euphyllura spp., Saissetia oleae, Parlatoria oleae, Eriophyidae, Cycloconium oleaginum, Glomerella cingulata/broadleaf and grassy weeds Conyza spp. Parietaria Judaica |
Registered insecticides and related plant protection products | Abamectin, acetamiprid, aluminium silicate, Bacillus thuringiensis (ABTS, SA1, PB5, EG2,GC-91), Beauveria bassiana, cyantraniliprole, deltamethrin, fatty acid potassium salt, fenoxycarb, flupyradifurone, paraffin oil, pyriproxyfen, spinetoram, spinosad, spirotetramat, hydrolyzed proteins, urea |
C for S Insecticides | lambda-Cyhalothrin |
Registered fungicides | azoxystrobin, Bacillus amyloliquefaciens, dodine, eugenol, fenbuconazole, geraniol, kresoxim-methyl, potassium phosphonates, pyraclostrobin, sulfur, thymol, Trichoderma asperellum, Trichoderma atroviride, Trichoderma gamsii, trifloxystrobin |
C for S Fungicides | Bordeaux mixture, copper hydroxide, copper oxide, copper oxychloride, tribasic copper sulfate, difenoconazole, tebuconazole |
Registered Herbicides | 2,4-D, flazasulfuron, florasulam, fluazifop-p-butyl, fluroxypyr, flumioxazin, glyphosate, iodosulfuron, mcpa, mefenpyr, oxyfluorfen, pelargonic acid, penoxsulam pyraflufen-ethyl, tribenuron |
C for S Herbicides | Diflufenican, metribuzin |
Crop/pests/pathogens/weeds | Wheat/Agrotis spp./ Rhopalosiphum padi, Sitobion avenae, Limothrips cerealium/Puccinia striiformis, graminis, recondita, Erysiphe graminis, Septoria tritici, nodorum/broadleaf and grassy weeds |
Registered Insecticides and related plant protection products | Deltamethrin, Fatty acid potassium salt, flonicamid, flupyradifurone, tau-fluvalinate, tefluthrin |
C for S Insecticides | Cypermethrin, lambda-cyhalothrin, cypermethrin |
Registered Fungicides | Azoxystrobin, benzovindiflupyr, bixafen, cyproconazole, difenoconazole, fenpicoxamid, fenpropidin, fludioxonil, flutriafol, fluxapyroxad, ipconazole, isopyrazam, mefentrifluconazole, prochloraz, prothioconazole, pyraclostrobin, sedaxane, spiroxamine, sulfur, trifloxystrobin |
C for S Fungicides | Tebuconazole |
Registered Herbicides | 2,4-D, bentazone, carfentrazone-ethyl, florasulam, glyphosate, iodosulfuron, MCPA, mecoprop-p, mefenpyr, mesosulfuron, prosulfocarb, thiencarbazone-methyl, tribenuron |
C for S Herbicides | Pendimethalin, metsulfuron-methyl |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balaska, V.; Adamidou, Z.; Vryzas, Z.; Gasteratos, A. Sustainable Crop Protection via Robotics and Artificial Intelligence Solutions. Machines 2023, 11, 774. https://doi.org/10.3390/machines11080774
Balaska V, Adamidou Z, Vryzas Z, Gasteratos A. Sustainable Crop Protection via Robotics and Artificial Intelligence Solutions. Machines. 2023; 11(8):774. https://doi.org/10.3390/machines11080774
Chicago/Turabian StyleBalaska, Vasiliki, Zoe Adamidou, Zisis Vryzas, and Antonios Gasteratos. 2023. "Sustainable Crop Protection via Robotics and Artificial Intelligence Solutions" Machines 11, no. 8: 774. https://doi.org/10.3390/machines11080774
APA StyleBalaska, V., Adamidou, Z., Vryzas, Z., & Gasteratos, A. (2023). Sustainable Crop Protection via Robotics and Artificial Intelligence Solutions. Machines, 11(8), 774. https://doi.org/10.3390/machines11080774