Optimizing the Neural Network Architecture for Automation of the Tailored UV Post-Treatment of Photopolymer Printing Plates
Abstract
:1. Background
2. Materials and Methods
2.1. Photopolymer Printing Plates and Printed Motives
2.2. Measurement and Analysis of Printing Plates and Prints
2.3. Design of ANNs
3. Results and Discussion
3.1. SFE of Photopolymer Surfaces
3.2. Microscopy of the Printed Lines
3.3. Performance of ANNs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Balaban, P.; Viduka, D.; Ristic, V.; Maksin, M.; Radic, V.; Vladisavljevic, R.; Vulic, M.; Josimovic, M.; Radivojevic, N.Z. Mechanical and barrier properties of flexible packaging materials after the flexo printing process. J. Natl. Sci. Found. Sri. Lanka 2021, 49, 513. [Google Scholar] [CrossRef]
- Muthamma, K.; Gouda, B.M.; Sunil, D.; Kulkarni, S.D.; PJ, A. Water-based fluorescent flexo-ink for security applications. Chem. Pap. 2023, 1, 1–8. [Google Scholar] [CrossRef]
- Zhong, Z.W.; Ee, J.H.; Chen, S.H.; Shan, X.C. Parametric investigation of flexographic printing processes for R2R printed electronics. Mater. Manuf. Process. 2020, 35, 564–571. [Google Scholar] [CrossRef]
- Wolfer, T.; Bollgruen, P.; Mager, D.; Overmeyer, L.; Korvink, J.G. Flexographic and Inkjet Printing of Polymer Optical Waveguides for Fully Integrated Sensor Systems. Procedia Technol. 2014, 15, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Morgan, M.L.; Holder, A.; Curtis, D.J.; Deganello, D. Formulation, characterisation and flexographic printing of novel Boger fluids to assess the effects of ink elasticity on print uniformity. Rheol. Acta 2018, 57, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Deganello, D.; Cherry, J.A.; Gethin, D.T.; Claypole, T.C. Impact of metered ink volume on reel-to-reel flexographic printed conductive networks for enhanced thin film conductivity. Thin Solid Films 2012, 520, 2233–2237. [Google Scholar] [CrossRef]
- Joyce, M.; Pal, L.; Hicks, R.; Agate, S.; Williams, T.S.; Ray, G.; Fleming, P.D. Custom tailoring of conductive ink/substrate properties for increased thin film deposition of poly(dimethylsiloxane) films. J. Mater. Sci. Mater. Electron. 2018, 29, 10461–10470. [Google Scholar] [CrossRef]
- Schmitz, C.; Poplata, T.; Feilen, A.; Strehmel, B. Radiation crosslinking of pigmented coating material by UV LEDs enabling depth curing and preventing oxygen inhibition. Prog. Org. Coat. 2020, 144, 105663. [Google Scholar] [CrossRef]
- Yagci, Y.; Jockusch, S.; Turro, N.J. Photoinitiated Polymerization: Advances, Challenges, and Opportunities. Macromolecules 2010, 43, 6245–6260. [Google Scholar] [CrossRef]
- Izdebska-Podsiadły, J.; Samoraj, M.; Blachowski, K.; Markowski, L.; Godlewski, H.; Dąbrowa, T.; Żołek-Tryznowska, Z. A comparative study of the interaction between the dried ink layer and PLA film used for packaging purposes. Polym. Eng. Sci. 2021, 61, 3118–3124. [Google Scholar] [CrossRef]
- Hamblyn, A. Effect of Plate Characteristics on Ink Transfer in Flexographic Printing. Ph.D. Thesis, Swansea University, Swansea, UK, 2015. [Google Scholar]
- Andrzejewska, E. Photopolymerization kinetics of multifunctional monomers. Prog. Polym. Sci. 2001, 26, 605–665. [Google Scholar] [CrossRef]
- Knöll, R. Photopolymerizable Flexographic Printing Elements Comprising SIS/SBS Mixtures as Binder for the Production of Flexographic Printing Plates. U.S. Patent 6,531,263, 11 March 2003. [Google Scholar]
- Cosnahan, T.; Watt, A.A.R.; Assender, H.E. Flexography Printing for Organic Thin Film Transistors. Mater. Today Proc. 2018, 5, 16051–16057. [Google Scholar] [CrossRef]
- Izdebska-Podsiadły, J.; Podsiadło, H. Influence of biodegradable solvent-based ink on the flexography print quality of compostable films. Polym. Res. J. 2016, 10, 283–293. [Google Scholar]
- Tian, Q.; Liu, Y.; Wang, H. Study on Exposure Characteristics of Ultraviolet (UV) Light-Emitting Diode (LED) for Platemaking of Flexopress. Lect. Notes Electr. Eng. 2022, 896, 220–227. [Google Scholar] [CrossRef]
- Andersson, C.; Johnson, J.; Järnström, L. Ultraviolet-induced aging of flexographic printing plates studied by thermal and structural analysis methods. J. Appl. Polym. Sci. 2009, 112, 1636–1646. [Google Scholar] [CrossRef]
- Mahović Poljaček, S.; Tomašegović, T.; Leskovac, M.; Jakovljević, S. Neural network-based UV adjustment of the photopolymer surface for modification of coating properties printed in flexography. J. Coat. Technol. Res. 2020, 17, 271–284. [Google Scholar] [CrossRef]
- Kalay, O.C.; Karpat, E.; Dirik, A.E.; Karpat, F. A One-Dimensional Convolutional Neural Network-Based Method for Diagnosis of Tooth Root Cracks in Asymmetric Spur Gear Pairs. Machines 2023, 11, 413. [Google Scholar] [CrossRef]
- Cavaleri, L.; Asteris, P.G.; Psyllaki, P.P.; Douvika, M.G.; Skentou, A.D.; Vaxevanidis, N.M. Prediction of surface treatment effects on the tribological performance of tool steels using artificial neural networks. Appl. Sci. 2019, 9, 2788. [Google Scholar] [CrossRef] [Green Version]
- Steege, T.; Bernard, G.; Darm, P.; Kunze, T.; Lasagni, A.F. Prediction of Surface Roughness in Functional Laser Surface Texturing Utilizing Machine Learning. Photonics 2023, 10, 361. [Google Scholar] [CrossRef]
- Ahadian, S.; Moradian, S.; Sharif, F.; Tehran, M.A.; Mohseni, M. Application of artificial neural network (ANN) in order to predict the surface free energy of powders using the capillary rise method. Colloids Surf. A Physicochem. Eng. Asp. 2007, 302, 280–285. [Google Scholar] [CrossRef]
- Nakano, T.; Alessandro Bucci, M.; Gratien, J.-M.; Faney, T.; Charpiat, G.; Nakano, T.; Bucci, M.A.; Gratien, J.; Faney, T.; Charpiat, G. Machine Learning Model for Gas-Liquid Interface Reconstruction in CFD Numerical Simulations. Available online: https://hal.science/hal-03721729/document (accessed on 25 April 2023).
- Ni, P.; Goto, H.; Nakamoto, M.; Tanaka, T. Neural network modelling on contact angles of liquid metals and oxide ceramics. ISIJ Int. 2020, 60, 1586–1595. [Google Scholar] [CrossRef]
- Soori, T.; Moein Rassoulinejad-Mousavi, S.; Zhang, L.; Rokoni, A.; Sun, Y. A machine learning approach for estimating surface tension based on pendant drop images. Fluid Phase Equilibria. 2021, 538, 1130122021. [Google Scholar] [CrossRef]
- Roosta, A.; Setoodeh, P.; Jahanmiri, A. Artificial neural network modeling of surface tension for pure organic compounds. Ind. Eng. Chem. Res. 2012, 51, 561–566. [Google Scholar] [CrossRef]
- Mulero, Á.; Pierantozzi, M.; Cachadiña, I.; Di Nicola, G. An Artificial Neural Network for the surface tension of alcohols. Fluid Phase Equilib. 2017, 449, 28–40. [Google Scholar] [CrossRef]
- Shaikh, M.S.; Shariff, A.M.; Bustam, M.A.; Garg, S.; Qureshi, K.; Shaikh, P.H.; Bhatti, I. Experimental studies and artificial neural network modeling of surface tension of aqueous sodium L-prolinate solutions and piperazine blends. Chin. J. Chem. Eng. 2019, 27, 1904–1911. [Google Scholar] [CrossRef]
- Tomašegović, T.; Beynon, D.; Claypole, T.; Mahović Poljaček, S. Tailoring the properties of deposited thin coating and print features in flexography by application of UV-ozone treatment. J. Coat. Technol. Res. 2016, 13, 815–828. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Van Oss, C.J.; Giese, R.F.; Li, Z.; Murphy, K.; Norris, J.; Chaudhury, M.K.; Good, R.J. Contact Angle, Wettability and Adhesion; Mittal, K.L., Ed.; VSP: Utrecht, The Netherlands, 1993. [Google Scholar]
- Priselac, D.; Mahović Poljaček, S.; Tomašegović, T.; Leskovac, M. Blends Based on Poly(ε-Caprolactone) with Addition of Poly(Lactic Acid) and Coconut Fibers: Thermal Analysis, Ageing Behavior and Application for Embossing Process. Polymers 2022, 14, 1792. [Google Scholar] [CrossRef]
- Mogg, B.T.; Claypole, T.; Deganello, D.; Phillips, C. Flexographic printing of ultra-thin semiconductor polymer layers. Transl. Mater. Res. 2016, 3, 015001. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Yan, D.; Fu, J.; Chen, Y.; Ou, H. Ultraviolet-C and vacuum ultraviolet inducing surface degradation of microplastics. Water Res. 2020, 186, 116360. [Google Scholar] [CrossRef]
- Watuthanthrige, N.D.A.; Reeves, J.A.; Dolan, M.T.; Valloppilly, S.; Zanjani, M.B.; Ye, Z.; Konkolewicz, D. Wavelength-Controlled Synthesis and Degradation of Thermoplastic Elastomers Based on Intrinsically Photoresponsive Phenyl Vinyl Ketone. Macromolecules 2020, 53, 5199–5207. [Google Scholar] [CrossRef]
- Takacs, G.A.; Miri, M.J.; Kovach, T. Vacuum UV Surface Photo-Oxidation of Polymeric and Other Materials for Improving Adhesion: A Critical Review. Prog. Adhes. Adhes. 2021, 6, 559–585. [Google Scholar] [CrossRef]
- Chylińska, M.; Kaczmarek, H.; Moszyński, D.; Królikowski, B.; Kowalonek, J. Surface Studies of UV Irradiated Polypropylene Films Modified with Mineral Fillers Designed as Piezoelectric Materials. Polymers 2020, 12, 562. [Google Scholar] [CrossRef] [Green Version]
- Kramer, P.; Davis, L.; Jones, R. Control of Free-Radical Reactivity in Photopolymerization of Acrylates. Available online: https://www.radtech.org/proceedings/2012/papers/Session%2024%20-%20Kinetics/PKramer_Rutgers.pdf (accessed on 25 April 2023).
- Cataldo, F. The action of ozone on polymers having unconjugated and cross- or linearly conjugated unsaturation: Chemistry and technological aspects. Polym. Degrad. Stab. 2001, 73, 511–520. [Google Scholar] [CrossRef]
- Tomašegović, T.; Mahović Poljaček, S.; Leskovac, M. UVA and UVC modification of photo polymeric surface and application for flexographic deposition of thin coatings. J. Appl. Polym. Sci. 2016, 133, 43526. [Google Scholar] [CrossRef]
A | B | C | D | E | F | G |
---|---|---|---|---|---|---|
relu | softplus | elu | selu | sigmoid | tanh | softsign |
Measured Values | Predicted Values | Deviation | |||||
---|---|---|---|---|---|---|---|
Dispersive SFE | Polar SFE | Dispersive SFE | Polar SFE | Dispersive SFE | Polar SFE | ||
Plate A | Min. | 32.04 | 0.10 | 32.15 | 0.09 | 0.11 | 0.01 |
Median | 31.84 | 0.13 | 32.55 | 0.06 | 0.71 | 0.06 | |
Max. | 31.95 | 0.12 | 33.19 | 0.24 | 1.24 | 0.12 | |
Plate B | Min. | 36.57 | 2.14 | 36.04 | 2.13 | 0.53 | 0.01 |
Median | 34.17 | 2.27 | 34.79 | 2.36 | 0.62 | 0.09 | |
Max. | 35.21 | 2.84 | 32.00 | 2.53 | 3.21 | 0.31 | |
Plate C | Min. | 24.33 | 4.38 | 24.32 | 4.40 | 0.02 | 0.02 |
Median | 25.11 | 4.82 | 25.48 | 4.61 | 0.37 | 0.21 | |
Max. | 25.78 | 3.44 | 25.10 | 4.57 | 0.68 | 1.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donevski, D.; Tomašegović, T.; Mahović Poljaček, S. Optimizing the Neural Network Architecture for Automation of the Tailored UV Post-Treatment of Photopolymer Printing Plates. Machines 2023, 11, 618. https://doi.org/10.3390/machines11060618
Donevski D, Tomašegović T, Mahović Poljaček S. Optimizing the Neural Network Architecture for Automation of the Tailored UV Post-Treatment of Photopolymer Printing Plates. Machines. 2023; 11(6):618. https://doi.org/10.3390/machines11060618
Chicago/Turabian StyleDonevski, Davor, Tamara Tomašegović, and Sanja Mahović Poljaček. 2023. "Optimizing the Neural Network Architecture for Automation of the Tailored UV Post-Treatment of Photopolymer Printing Plates" Machines 11, no. 6: 618. https://doi.org/10.3390/machines11060618
APA StyleDonevski, D., Tomašegović, T., & Mahović Poljaček, S. (2023). Optimizing the Neural Network Architecture for Automation of the Tailored UV Post-Treatment of Photopolymer Printing Plates. Machines, 11(6), 618. https://doi.org/10.3390/machines11060618