Design and Experiments of a Two-Stage Fuzzy Controller for the Off-Center Steer-by-Wire System of an Agricultural Mobile Robot
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Structure Design
2.2. Test of Steering Control Parameters
2.2.1. Test Factors and Indexes
2.2.2. Steering Condition Setting
2.2.3. Test Method
2.2.4. Analysis of Optimal Duty Cycle
2.3. Control Method Design for Steering
2.3.1. Structure of the Control System
2.3.2. Design of Fuzzy Controller
2.3.3. Parameter Self-Tuning of Fuzzy Controller
- (1)
- Definition of quantization factor and scale factor
- (2)
- Self-correction of quantization factor and scale factor
2.4. Verification Test for the Steering Control Method
2.4.1. Test Instrument
2.4.2. Test Method and Process
3. Results
3.1. Analysis of Steering Angle Changes
3.2. Analysis of Motion Posture Stability
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mondal, S.; Ray, R.; Reddy-N, S.; Nandy, S. Intelligent controller for nonholonomic wheeled mobile robot: A fuzzy path following combination. Math. Comput. Simulat. 2022, 193, 533–555. [Google Scholar] [CrossRef]
- Cheng, C.; Fu, J.; Su, H.; Ren, L. Recent advancements in agriculture robots: Benefits and challenges. Machines 2023, 11, 48. [Google Scholar] [CrossRef]
- Spykman, O.; Gabriel, A.; Ptacek, M.; Gandorfer, M. Farmers’ perspectives on field crop robots—Evidence from Bavaria, Germany. Comput. Electron. Agric. 2021, 186, 106176. [Google Scholar] [CrossRef]
- Ouyang, C.; Hatsugai, E.; Shimizu, I. Tomato disease monitoring system using modular extendable mobile robot for greenhouses: Automatically reporting locations of diseased tomatoes. Agronomy 2022, 12, 3160. [Google Scholar] [CrossRef]
- Xiao, H.; Yu, D.; Philip-Chen, C.L. Self-triggered-organized Mecanum-wheeled robots consensus system using model predictive based protocol. Inf. Sci. 2022, 590, 45–59. [Google Scholar] [CrossRef]
- Wang, L.; Lei, T.; Si, J.; Xu, K.; Wang, X.; Wang, J.; Wang, S. Speed consensus control for a parallel six-wheel-legged robot on uneven terrain. ISA Trans. 2022, 129, 628–641. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Zheng, J.; Chai, R.; Nguyen-Hung, T. Robust tracking control of a differential drive wheeled mobile robot using fast nonsingular terminal sliding mode. Comput. Electron. Agric. 2021, 96, 107488. [Google Scholar] [CrossRef]
- Zhang, Y.; Ni, J.; Tian, H.; Wu, W.; Hu, J. Integrated robust dynamics control of all-wheel-independently-actuated unmanned ground vehicle in diagonal steering. Mech. Syst Signal. Pr. 2022, 164, 108263. [Google Scholar] [CrossRef]
- Qiu, Q.; Fan, Z.; Meng, Z.; Zhang, Q.; Cong, Y.; Li, B.; Wang, N.; Zhao, C. Extended Ackerman steering principle for the coordinated movement control of a four-wheel drive agricultural mobile robot. Comput. Electron. Agric. 2018, 152, 40–50. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, X.; Liu, C.; Wei, S. Dual-steering mode based on direct yaw moment control for multi-wheel hub motor driven vehicles: Theoretical design and experimental assessment. Def. Technol. 2022, 18, 49–61. [Google Scholar] [CrossRef]
- Ni, L.; Wu, L.; Zhang, H. Parameters uncertainty analysis of posture control of a four-wheel-legged robot with series slow active suspension system. Mech. Mach. Theory 2022, 175, 104966. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, W. Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle. Mech. Syst Signal. Pract. 2018, 101, 389–404. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Meng, H.; Li, Z.; Sun, Z. Variable gain based composite trajectory tracking control for 4-wheel skid-steering mobile robots with unknown disturbances. Control. Eng. Pract. 2023, 132, 105428. [Google Scholar] [CrossRef]
- Tu, X.; Gai, J.; Tang, L. Robust navigation control of a 4WD/4WS agricultural robotic vehicle. Comput. Electron. Agric. 2019, 164, 104892. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, D.; Zhu, S.; Feng, J. Distributed active disturbance rejection control for Ackermann steering of a four-in-wheel motor drive vehicle with deception attacks on controller area networks. Inf. Sci. 2020, 540, 370–389. [Google Scholar] [CrossRef]
- Liu, D.; Tang, M.; Fu, J. Robust adaptive trajectory tracking for wheeled mobile robots based on Gaussian process regression. Syst. Control. Lett. 2022, 163, 105210. [Google Scholar] [CrossRef]
- Mishra, D.K.; Thomas, A.; Kuruvilla, J.; Kalyanasundaram, P.; Prasad, K.R.; Haldorai, A. Design of mobile robot navigation controller using neuro-fuzzy logic system. Comput. Electr. Eng. 2022, 101, 108044. [Google Scholar] [CrossRef]
- Khalaji, A.K.; Jalalnezhad, M. Robust forward\\backward control of wheeled mobile robots. ISA Trans. 2021, 115, 32–45. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, S.; Xie, Y.; Xie, S.; Zheng, S.; Meng, J. Fractional robust finite time control of four-wheel-steering mobile robots subject to serious time-varying perturbations. Mech. Mach. Theory 2022, 169, 104634. [Google Scholar] [CrossRef]
- Li, L.; Cao, W.; Yang, H.; Geng, Q. Trajectory tracking control for a wheel mobile robot on rough and uneven ground. Mechatronics 2022, 83, 102741. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Z.; Zhang, L.; Dorrell, D.G. Braking/steering coordination control for in-wheel motor drive electric vehicles based on nonlinear model predictive control. Mech. Mach. Theory 2019, 142, 103586. [Google Scholar] [CrossRef]
- Mérida-Calvo, L.; Rodríguez, A.S.-M.; Ramos, F.; Feliu-Batlle, V. Advanced motor control for improving the trajectory tracking accuracy of a low-cost mobile robot. Machines 2023, 11, 14. [Google Scholar] [CrossRef]
- Roshanianfard, A.; Noguchi, N.; Okamoto, H.; Ishii, K. A review of autonomous agricultural vehicles (The experience of Hokkaido University). J. Terramech. 2020, 91, 155–183. [Google Scholar] [CrossRef]
- Song, S.; Qu, J.; Li, Y.; Zhou, W.; Guo, K. Fuzzy control method for a steering system consisting of a four-wheel individual steering and four-wheel individual drive electric chassis. J. Int. Fuzzy Syst. 2016, 31, 2941–2948. [Google Scholar] [CrossRef]
- Qu, J.; Guo, K.; Zhang, Z.; Song, S.; Li, Y. Coupling control strategy and experiments for motion mode switching of a novel electric chassis. Appl. Sci. 2020, 10, 701. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Guo, K. Automatic tracking steering system for off-centered flexible chassis steering axis based on fuzzy-PI composite control. J. Int. Fuzzy Syst. 2018, 35, 187–195. [Google Scholar] [CrossRef]
- Qu, J.; Guo, K.; Gao, H.; Song, S.; Li, Y.; Zhou, W. Experiments on collaborative characteristics of driving and steering for agricultural flexible chassis based on PWM signal. Trans. CSAE 2018, 34, 75–81. [Google Scholar] [CrossRef]
- Qu, J.; Guo, K.; Li, Y.; Song, S.; Gao, H.; Zhou, W. Experiment and optimization of mode switching controlling parameters for agricultural flexible chassis. Trans. CSAM 2018, 49, 346–352. [Google Scholar] [CrossRef]
- Song, S.; Li, Y.; Qu, J.; Zhou, W.; Guo, K. Design and test of flexible chassis automatic tracking steering system. Int. J. Agr. Biol. Eng. 2017, 10, 45–54. [Google Scholar]
- Huang, W.; Zhang, Y.; Yu, Y.; Xu, Y.; Xu, M.; Zhang, R.; Dieu, G.J.D.; Yin, D.; Liu, Z. Historical data-driven risk assessment of railway dangerous goods transportation system: Comparisons between entropy weight method and scatter degree method. Reliab. Eng. Syst. Safe 2021, 205, 107236. [Google Scholar] [CrossRef]
- Li, Q.; Hu, H.; Ma, L.; Wang, Z.; Arıcı, M.; Li, D.; Luo, D.; Jia, J.; Jiang, W.; Qi, H. Evaluation of energy-saving retrofits for sunspace of rural residential buildings based on orthogonal experiment and entropy weight method. Energy. Sustain. Dev. 2022, 70, 569–580. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, B.; Fan, J.; Hu, X.; Wei, S.; Li, Y.; Zhou, Q.; Wei, C. Development of a tomato harvesting robot used in greenhouse. Int. J. Agr. Biol. Eng. 2017, 10, 140–149. [Google Scholar] [CrossRef]
- Jones, M.H.; Bell, J.; Dredge, D.; Seabright, M.; Scarfe, A.; Duke, M.; MacDonald, B. Design and testing of a heavy-duty platform for autonomous navigation in kiwifruit orchards. Biosyst. Eng. 2019, 187, 129–146. [Google Scholar] [CrossRef]
- Utstumo, T.; Urdal, F.; Brevik, A.; Dørum, J.; Netland, J.; Overskeid, Ø.; Berge, T.W.; Gravdahl, J.T. Robotic in-row weed control in vegetables. Comput. Electron. Agric. 2018, 154, 36–45. [Google Scholar] [CrossRef]
- Liu, D.; Wang, J.; Wang, S. Coordinated motion control and event-based obstacle-crossing for four wheel-leg independent motor-driven robotic system. Mechatronics 2022, 81, 102697. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Yang, S. The study on differential steering control of in-wheel motor vehicle based on double closed loop system. Energy Procedia 2018, 152, 586–592. [Google Scholar] [CrossRef]
- Ding, T.; Zhang, Y.; Ma, G.; Cao, Z.; Zhao, X.; Tao, B. Trajectory tracking of redundantly actuated mobile robot by MPC velocity control under steering strategy constraint. Mechatronics 2022, 84, 102779. [Google Scholar] [CrossRef]
- Sorour, M.; Cherubini, A.; Khelloufi, A.; Passama, R.; Fraisse, P. Complementary-route based icr control for steerable wheeled mobile robots. Robot. Auton. Syst. 2019, 118, 131–143. [Google Scholar] [CrossRef] [Green Version]
Steering Form | Rotation Speed of In-Wheel Motor (r·min−1) | Angle Signal (°) | Angular Velocity Signal (rad·s−1) | ||||
---|---|---|---|---|---|---|---|
mt1 | Motion of inner side wheel | nt1 | 30 | δt1 | 10 | ωt1 | 1.05 |
nt2 | 60 | δt2 | 20 | ωt2 | 3.14 | ||
mt2 | Motion of outer side wheel | nt3 | 90 | δt3 | 30 | ωt3 | 5.23 |
Steering Cases (mt1) | Dopt (%) | Steering Cases (mt2) | Dopt (%) | ||||
---|---|---|---|---|---|---|---|
nt (r·min−1) | δt (°) | ωt (rad·s−1) | nt (r·min−1) | δt (°) | ωt (rad·s−1) | ||
nt1 (30) | δt1 (10) | ωt1 (1.05) | 80 | nt1 (30) | δt1 (10) | ωt1 (1.05) | 76 |
nt1 (30) | δt1 (10) | ωt2 (3.14) | 71 | nt1 (30) | δt1 (10) | ωt2 (3.14) | 67 |
nt1 (30) | δt1 (10) | ωt3 (5.23) | 59 | nt1 (30) | δt1 (10) | ωt3 (5.23) | 55 |
nt1 (30) | δt2 (20) | ωt1 (1.05) | 77 | nt1 (30) | δt2 (20) | ωt1 (1.05) | 72 |
nt1 (30) | δt2 (20) | ωt2 (3.14) | 66 | nt1 (30) | δt2 (20) | ωt2 (3.14) | 59 |
nt1 (30) | δt2 (20) | ωt3 (5.23) | 51 | nt1 (30) | δt2 (20) | ωt3 (5.23) | 45 |
nt1 (30) | δt3 (30) | ωt1 (1.05) | 69 | nt1 (30) | δt3 (30) | ωt1 (1.05) | 65 |
nt1 (30) | δt3 (30) | ωt2 (3.14) | 54 | nt1 (30) | δt3 (30) | ωt2 (3.14) | 50 |
nt1 (30) | δt3 (30) | ωt3 (5.23) | 36 | nt1 (30) | δt3 (30) | ωt3 (5.23) | 30 |
nt2 (60) | δt1 (10) | ωt1 (1.05) | 76 | nt2 (60) | δt1 (10) | ωt1 (1.05) | 71 |
nt2 (60) | δt1 (10) | ωt2 (3.14) | 66 | nt2 (60) | δt1 (10) | ωt2 (3.14) | 60 |
nt2 (60) | δt1 (10) | ωt3 (5.23) | 54 | nt2 (60) | δt1 (10) | ωt3 (5.23) | 44 |
nt2 (60) | δt2 (20) | ωt1 (1.05) | 71 | nt2 (60) | δt2 (20) | ωt1 (1.05) | 57 |
nt2 (60) | δt2 (20) | ωt2 (3.14) | 50 | nt2 (60) | δt2 (20) | ωt2 (3.14) | 39 |
nt2 (60) | δt2 (20) | ωt3 (5.23) | 46 | nt2 (60) | δt2 (20) | ωt3 (5.23) | 36 |
nt2 (60) | δt3 (30) | ωt1 (1.05) | 59 | nt2 (60) | δt3 (30) | ωt1 (1.05) | 43 |
nt2 (60) | δt3 (30) | ωt2 (3.14) | 39 | nt2 (60) | δt3 (30) | ωt2 (3.14) | 34 |
nt2 (60) | δt3 (30) | ωt3 (5.23) | 24 | nt2 (60) | δt3 (30) | ωt3 (5.23) | 20 |
nt3 (90) | δt1 (10) | ωt1 (1.05) | 71 | nt3 (90) | δt1 (10) | ωt1 (1.05) | 64 |
nt3 (90) | δt1 (10) | ωt2 (3.14) | 60 | nt3 (90) | δt1 (10) | ωt2 (3.14) | 55 |
nt3 (90) | δt1 (10) | ωt3 (5.23) | 52 | nt3 (90) | δt1 (10) | ωt3 (5.23) | 39 |
nt3 (90) | δt2 (20) | ωt1 (1.05) | 65 | nt3 (90) | δt2 (20) | ωt1 (1.05) | 44 |
nt3 (90) | δt2 (20) | ωt2 (3.14) | 44 | nt3 (90) | δt2 (20) | ωt2 (3.14) | 36 |
nt3 (90) | δt2 (20) | ωt3 (5.23) | 40 | nt3 (90) | δt2 (20) | ωt3 (5.23) | 28 |
nt3 (90) | δt3 (30) | ωt1 (1.05) | 55 | nt3 (90) | δt3 (30) | ωt1 (1.05) | 41 |
nt3 (90) | δt3 (30) | ωt2 (3.14) | 35 | nt3 (90) | δt3 (30) | ωt2 (3.14) | 23 |
nt3 (90) | δt3 (30) | ωt3 (5.23) | 20 | nt3 (90) | δt3 (30) | ωt3 (5.23) | 20 |
Fuzzy Rules | Change in Angular Velocity | |||||||
---|---|---|---|---|---|---|---|---|
NB | NM | NS | ZE | PS | PM | PB | ||
Change in angle signal | NB | PB | PB | PM | PM | PS | PS | ZE |
NM | PB | PB | PM | PM | PS | ZE | NS | |
NS | PM | PM | PS | PS | ZE | NS | NS | |
ZE | PM | PM | PS | ZE | NS | NM | NM | |
PS | PS | PS | ZE | NS | NS | NM | NM | |
PM | PS | ZE | NS | NM | NM | NB | NB | |
PB | ZE | NS | NS | NM | NM | NB | NB |
Fuzzy Rules for Quantization Factor/Scale Factor | Change in Angular Velocity | |||||
---|---|---|---|---|---|---|
NB | NS | ZE | PS | PB | ||
Change in angle signal | NB | PB/NB | PM/NM | PM/NS | PS/NS | ZE/ZE |
NS | PM/NM | PS/NS | PS/NS | ZE/ZE | NS/PS | |
ZE | PM/NM | PS/NS | ZE/ZE | NS/PS | NM/PM | |
PS | PS/NS | ZE/ZE | NS/PS | NS/PS | NB/PB | |
PB | ZE/ZE | NS/NS | NM/PM | NM/PM | NB/PB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, J.; Zhang, Z.; Li, H.; Li, M.; Xi, X.; Zhang, R. Design and Experiments of a Two-Stage Fuzzy Controller for the Off-Center Steer-by-Wire System of an Agricultural Mobile Robot. Machines 2023, 11, 314. https://doi.org/10.3390/machines11020314
Qu J, Zhang Z, Li H, Li M, Xi X, Zhang R. Design and Experiments of a Two-Stage Fuzzy Controller for the Off-Center Steer-by-Wire System of an Agricultural Mobile Robot. Machines. 2023; 11(2):314. https://doi.org/10.3390/machines11020314
Chicago/Turabian StyleQu, Jiwei, Zhe Zhang, Hongji Li, Ming Li, Xiaobo Xi, and Ruihong Zhang. 2023. "Design and Experiments of a Two-Stage Fuzzy Controller for the Off-Center Steer-by-Wire System of an Agricultural Mobile Robot" Machines 11, no. 2: 314. https://doi.org/10.3390/machines11020314
APA StyleQu, J., Zhang, Z., Li, H., Li, M., Xi, X., & Zhang, R. (2023). Design and Experiments of a Two-Stage Fuzzy Controller for the Off-Center Steer-by-Wire System of an Agricultural Mobile Robot. Machines, 11(2), 314. https://doi.org/10.3390/machines11020314