Experimental Validation of a Driver Monitoring System
Abstract
:1. Introduction
1.1. Biomechanics of a Whiplash Motion
1.2. Injury Criteria
2. Materials and Methods
2.1. Issues and Requirements
2.2. Monitoring Design
2.3. New Injury Criterion
2.4. Design of Experimental Tests
3. Results
4. Discussion
5. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Freeman, M.D.; Leith, W.M. Estimating the number of traffic crash-related cervical spine injuries in the United States; An analysis and comparison of national crash and hospital data. Accid. Anal. Prev. 2020, 142, 105571. [Google Scholar] [CrossRef]
- Li, F.; Liu, N.S.; Li, H.G.; Zhang, B.; Tian, S.W.; Tan, M.G.; Sandoz, B. A review of neck injury and protection in vehicle accidents. Transp. Saf. Environ. 2019, 1, 89–105. [Google Scholar] [CrossRef]
- Teasell, R.; Mehta, S.; Loh, E. Whiplash Injuries. Curr. Treat. Options Rheumatol. 2020, 6, 394–405. [Google Scholar] [CrossRef]
- Briggs, A.M.; Woolf, A.D.; Dreinhöfer, K.; Homb, N.; Hoy, D.G.; Kopansky-Giles, D.; Åkesson, K.; March, L. Reducing the global burden of musculoskeletal conditions. Bull. World Health Organ. 2018, 96, 366. [Google Scholar] [CrossRef] [PubMed]
- Boström, O.; Svensson, M.Y.; Aldman, B.; Hansson, H.A.; Håland, Y.; Lövsund, P.; Örtengren, T. A new neck injury criterion candidate-based on injury findings in the cervical spinal ganglia after experimental neck extension trauma. In Proceedings of the International Ircobi Conference on the Biomechanics of Impact, Dublin, Ireland, 11–13 September 1996. [Google Scholar]
- Ono, K.; Kaneoka, K.; Wittek, A.; Kajzer, J. Cervical injury mechanism based on the analysis of human cervical vertebral motion and head-neck-torso kinematics during low speed rear impacts. SAE Trans. 1997, 106, 3859–3876. [Google Scholar] [CrossRef]
- Meyer, F.; Humm, J.; Purushothaman, Y.; Willinger, R.; Pintar, F.A.; Yoganandan, N. Forces and moments in cervical spinal column segments in frontal impacts using finite element modeling and human cadaver tests. J. Mech. Behav. Biomed. Mater. 2019, 90, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Siegmund, G.P.; Heinrichs, B.E.; Chimich, D.D.; Lawrence, J. Variability in vehicle and dummy responses in rear-end collisions. Traffic Inj. Prev. 2005, 6, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Rueda-Arreguín, J.L.; Ceccarelli, M.; Torres-SanMiguel, C.R. Design of an Articulated Neck to Assess Impact Head-Neck Injuries. Life 2022, 12, 313. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Huang, J.; Li, F.; Hu, L. Investigation of the effect of neck muscle active force on whiplash injury of the cervical spine. Appl. Bionics Biomech. 2018, 2018, 4542750. [Google Scholar] [CrossRef]
- John, J.; Putra, I.P.A.; Iraeus, J. Finite Element Human Body Models to study Sex-differences in Whiplash Injury: Validation of VIVA+ passive response in rear-impact. In Proceedings of the International Ircobi Conference on the Biomechanics of Impact, Porto, Portugal, 14–16 September 2022. [Google Scholar]
- Wang, Y.; Jiang, H.; Teo, E.C.; Gu, Y. Finite Element Analysis of Head–Neck Kinematics in Rear-End Impact Conditions with Headrest. Bioengineering 2023, 10, 1059. [Google Scholar] [CrossRef]
- Schmitt, K.U.; Muser, M.H.; Walz, F.H.; Niederer, P.F. N km—A proposal for a neck protection criterion for low-speed rear-end impacts. Traffic Inj. Prev. 2002, 3, 117–126. [Google Scholar] [CrossRef]
- Kleinberger, M.; Sun, E.; Eppinger, R.; Kuppa, S.; Saul, R. Development of improved injury criteria for the assessment of advanced automotive restraint systems. NHTSA Docket 1998, 4405, 12–17. [Google Scholar]
- Heitplatz, F.; Sferco, R.; Fay, P.; Reim, J.; Kim, A.; Prasad, P. An evaluation of existing and proposed injury criteria with various dummies to determine their ability to predict the levels of soft tissue neck injury seen in real world accidents. In Proceedings of the 18th International Technical Conference on the Enhanced Safety of Vehicles, Nagoya, Japan, 19–22 May 2003. [Google Scholar]
- Panjabi, M.M.; Wang, J.L.; Delson, N. Neck injury criterion based on intervertebral motions and its evaluation using an instrumented neck dummy. In Proceedings of the International Research Council on the Biomechanics of Injury Conference, Sitges, Spain, 23–24 September 1999. [Google Scholar]
- Viano, D.C.; Davidsson, J. Neck displacements of volunteers, BioRID P3 and Hybrid III in rear impacts: Implications to whiplash assessment by a neck displacement criterion (NDC). Traffic Inj. Prev. 2002, 3, 105–116. [Google Scholar] [CrossRef]
- Munoz, D.; Mansilla, A.; Lopez-Valdes, F.; Martin, R. A study of current neck injury criteria used for whiplash analysis proposal of a new criterion involving upper and lower neck load cells. In Proceedings of the 19th Experimental Safety Vehicles Conference, Washington, DC, USA, 6–9 June 2005. [Google Scholar]
- Kuppa, S.; Saunders, J.; Stammen, J.; Mallory, A. Kinematically based whiplash injury criterion. Injury 2005, 1, 1–8. [Google Scholar]
- Garrosa, M.; Ceccarelli, M.; Russo, M.; Cafolla, D. Lab Experiences for a Driver Monitoring System. In New Trends in Medical and Service Robotics. MESROB 2023. Mechanisms and Machine Science; Tarnita, D., Dumitru, N., Pisla, D., Carbone, G., Geonea, I., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 109–116. [Google Scholar] [CrossRef]
- Ono, K.; Kanno, M. Influences of the physical parameters on the risk to neck injuries in low impact speed rear-end collisions. Accid. Anal. Prev. 1996, 28, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Santos-Cuadros, S.; Fuentes del Toro, S.; Olmeda, E.; San Román, J.L. Surface electromyography study using a low-cost system: Are there neck muscles differences when the passenger is warned during an emergency braking inside an autonomous vehicle? Sensors 2021, 21, 5378. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Ferrari, R.; Narayan, Y.; Jones, T. The effect of seat belt use on the cervical electromyogram response to whiplash-type impacts. J. Manip. Physiol. Ther. 2006, 29, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Panjabi, M.M.; Pearson, A.M.; Ito, S.; Ivancic, P.C.; Wang, J.L. Cervical spine curvature during simulated whiplash. Clin. Biomech. 2004, 19, 1–9. [Google Scholar] [CrossRef]
- Cholewicki, J.; Panjabi, M.M.; Nibu, K.; Babat, L.B.; Grauer, J.N.; Dvorak, J. Head kinematics during in vitro whiplash simulation. Accid. Anal. Prev. 1998, 30, 469–479. [Google Scholar] [CrossRef]
- Grauer, J.N.; Panjabi, M.M.; Cholewicki, J.; Nibu, K.; Dvorak, J. Whiplash produces an S-shaped curvature of the neck with hyperextension at lower levels. Spine 1997, 22, 2489–2494. [Google Scholar] [CrossRef]
- Ono, K.; Kaneoka, K. Motion analysis of human cervical vertebrae during low-speed rear impacts by the simulated sled. Traffic Inj. Prev. 1999, 1, 87–99. [Google Scholar] [CrossRef]
- Eichberger, A.; Steffan, H.; Geigl, B.; Svensson, M.; Boström, O.; Leinzinger, P.E.; Darok, M. Evaluation of the applicability of the neck injury criterion (NIC) in rear end impacts on the basis of human subject tests. In Proceedings of the International Ircobi Conference on the Biomechanics of Impact, Gothenburg, Sweden, 16–18 September 1998. [Google Scholar]
- Wheeler, J.B.; Smith, T.; Siegmund, G.P.; Brault, J.R.; King, D.J. Validation of the neck injury criterion (NIC) using kinematic and clinical results from human subjects in rear-end collisions. In Proceedings of the International Ircobi Conference on the Biomechanics of Impact, Gothenburg, Sweden, 16–18 September 1998. [Google Scholar]
- Yoganandan, N.; Pintar, F.A. Frontiers in Whiplash Trauma: Clinical and Biomechanical; IOS Press: Amsterdam, The Netherlands, 2000; Volume 38. [Google Scholar]
- Ivancic, P.C.; Xiao, M. Understanding whiplash injury and prevention mechanisms using a human model of the neck. Accid. Anal. Prev. 2011, 43, 1392–1399. [Google Scholar] [CrossRef] [PubMed]
- Garrosa, M.; Ceccarelli, M.; Díaz, V. Problems and Requirements in Impact Analysis from Vehicle Accidents. In Advances in Italian Mechanism Science: Proceedings of the 4th International Conference of IFToMM ITALY; Niola, V., Gasparetto, A., Quaglia, G., Carbone, G., Eds.; Mechanisms and Machine Science; Springer Nature: Cham, Switzerland, 2022; Volume 122, pp. 346–354. [Google Scholar] [CrossRef]
- Ceccarelli, M.; Cafolla, D.; Russo, M.; Garrosa, M.; Díaz, V. Vehicle Driver Monitoring Device. Italy Patent Request No. 102022000022092, 26 October 2022. [Google Scholar]
- Ceccarelli, M.; Cafolla, D.; Russo, M.; Garrosa, M.; Díaz, V. Dispositivo para la monitorización del conductor de un vehículo. Spain Patent Request No. 202231105, 23 December 2022. [Google Scholar]
- Datasheet [Online]. Available online: https://www.alldatasheet.com (accessed on 15 May 2023).
- Arduino Mega 2560. Available online: https://docs.arduino.cc/hardware/mega-2560 (accessed on 30 June 2023).
- Garrosa, M.; Ceccarelli, M.; Díaz, V. Propuesta de un nuevo criterio para cuantificar las lesiones en impactos de vehículos. In Proceedings of the Libro de Actas del XV Congreso Iberoamericano de Ingeniera Mecánica, Madrid, Spain, 22–24 November 2022; Volume 3, pp. 291–300. (In Spanish) [Google Scholar] [CrossRef]
- Garrosa, M.; Ceccarelli, M.; Díaz, V. Biomechanics in vehicle accidents for risk analysis. Int. J. Mech. Control 2023, 24, 43–52. [Google Scholar]
- Kumar, S.; Narayan, Y.; Amell, T. Analysis of low velocity frontal impacts. Clin. Biomech. 2003, 18, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Ferrari, R.; Narayan, Y. Kinematic and electromyographic response to whiplash-type impacts. Effects of head rotation and trunk flexion: Summary of research. Clin. Biomech. 2005, 20, 553–568. [Google Scholar] [CrossRef]
- Hernández, I.A.; Fyfe, K.R.; Heo, G.; Major, P.W. Kinematics of head movement in simulated low velocity rear-end impacts. Clin. Biomech. 2005, 20, 1011–1018. [Google Scholar] [CrossRef]
- Fuentes del Toro, S.; Santos-Cuadros, S.; Olmeda, E.; San Román, J.L. Study of the Emergency Braking Test with an Autonomous Bus and the sEMG Neck Response by Means of a Low-Cost System. Micromachines 2020, 11, 931. [Google Scholar] [CrossRef]
Technical Specification | IMU MPU-6050 [35] | Laser Infrared VL53L0X [35] | Multiplexer TCA9548A [35] |
---|---|---|---|
Operating voltage | 2.375–3.46 V | 2.6–3.5 V | 1.65–5.5 V |
Range | ±16 g | 50–1200 mm | 0–400 kHz |
Main specifications | Sensitivity: 2048 LSB/g | Field of view (FOV): 25° 940 nm laser vertical cavity surface-emitting laser (VCSEL) | 1–8 Bidirectional translating switches |
Size | 16.5 × 20 mm | 10.5 × 13.3 mm | 30.6 × 17.6 mm |
Cost | 1.79 € | 4.79 € | 4.99 € |
Technical Specification | Arduino MEGA 2560 [36] |
---|---|
Microcontroller | ATmega 2560 |
Operating voltage | 5 V |
Analog input pins | 16 |
Digital input/output pins | 54 |
Flash memory | 256 kB |
Static random access memory (SRAM) | 8 kB |
Processor speed | 16 MHz |
Size | 101.52 × 53.3 mm |
Cost | 46.12 € |
Volunteer 1 | (m/s) | (m/s2) | (m/s2) | (m/s2) | (m/s2) | (m) | (m) | (m) | (m) |
---|---|---|---|---|---|---|---|---|---|
Test 1 | 2.78 | 13.70 | 5.72 | 6.96 | 2.18 | 0.50 | 0.32 | 0.53 | 0.39 |
Test 2 | 5.56 | 15.99 | 9.01 | 8.19 | 4.03 | 0.53 | 0.28 | 0.53 | 0.33 |
Test 3 | 8.33 | 19.17 | 9.57 | 9.28 | 5.09 | 0.55 | 0.22 | 0.54 | 0.27 |
Test | NHIC2 |
---|---|
1 | 2937 |
2 | 1873 |
3 | 1491 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garrosa, M.; Ceccarelli, M.; Díaz, V.; Russo, M. Experimental Validation of a Driver Monitoring System. Machines 2023, 11, 1060. https://doi.org/10.3390/machines11121060
Garrosa M, Ceccarelli M, Díaz V, Russo M. Experimental Validation of a Driver Monitoring System. Machines. 2023; 11(12):1060. https://doi.org/10.3390/machines11121060
Chicago/Turabian StyleGarrosa, María, Marco Ceccarelli, Vicente Díaz, and Matteo Russo. 2023. "Experimental Validation of a Driver Monitoring System" Machines 11, no. 12: 1060. https://doi.org/10.3390/machines11121060
APA StyleGarrosa, M., Ceccarelli, M., Díaz, V., & Russo, M. (2023). Experimental Validation of a Driver Monitoring System. Machines, 11(12), 1060. https://doi.org/10.3390/machines11121060