Prediction of SOx-NOx Emission in Coal-Fired Power Plant Using Deep Neural Network
Abstract
:1. Introduction
2. Materials and Methods
3. Model Development
3.1. Data Preprocessing
3.1.1. Coal Mixture
3.1.2. Feature Selection for AI Model Development
3.2. Prediction Model Development
3.2.1. Data Collection
3.2.2. Normalization
3.2.3. DNN Model
3.3. Evaluation of Model Performance
3.3.1. Performance Measure
3.3.2. Prediction Results
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gilbert, A.; Bazilian, M.D.; Gross, S. The Emerging Global Natural Gas Market and the Energy Crisis of 2021–2022; Brookings Report. 2021. Available online: https://www.brookings.edu/wp-content/uploads/2021/12/FP_20211214_global_energy_crisis_gilbert_bazilian_gross.pdf (accessed on 20 November 2023).
- Clark, R.; Zucker, N.; Urpelainen, J. The Future of Coal-Fired Power Generation in Southeast Asia. Renew. Sustain. Energy Rev. 2020, 121, 109650. [Google Scholar] [CrossRef]
- Jiang, K.; Xing, R.; Luo, Z.; Huang, W.; Yi, F.; Men, Y.; Zhao, N.; Chang, Z.; Zhao, J.; Pan, B. Pollutant Emissions from Biomass Burning: A Review on Emission Characteristics, Environmental Impacts, and Research Perspectives. Particuology 2023, 85, 296–309. [Google Scholar] [CrossRef]
- Tiwari, S.; Neha Mishra, N.M. Methods for the Measurement of Air Pollutants. In Air Pollution: SOURCES, Impacts and Controls; CAB International: Wallingford, UK, 2019; pp. 55–78. [Google Scholar]
- Arens, M.; Åhman, M.; Vogl, V. Which Countries Are Prepared to Green Their Coal-Based Steel Industry with Electricity? Reviewing Climate and Energy Policy as Well as the Implementation of Renewable Electricity. Renew. Sustain. Energy Rev. 2021, 143, 110938. [Google Scholar] [CrossRef]
- Liu, C.; Xu, J.; Li, M.; Wang, Q.; Liu, G. The Comprehensive Solution to Decrease Cooling Wall Temperatures of sCO2 Boiler for Coal Fired Power Plant. Energy 2022, 252, 124021. [Google Scholar] [CrossRef]
- Hou, H.; Xie, B.; Cheng, Y. Analysis of Carbon Emissions and Emission Reduction from Coal-Fired Power Plants Based on Dual Carbon Targets. Sustainability 2023, 15, 7369. [Google Scholar] [CrossRef]
- Taha, Y.; Elghali, A.; Derhy, M.; Amrani, M.; Hakkou, R.; Benzaazoua, M. Towards an Integrated Approach for Zero Coal Mine Waste Storage: Solutions Based on Materials Circularity and Sustainable Resource Governance. Miner. Process. Extr. Metall. Rev. 2023, 44, 375–388. [Google Scholar] [CrossRef]
- Kim, Y.; Park, T.; Hong, D. Heating and Emission Characteristics of Briquettes Developed from Spent Coffee Grounds. Environ. Eng. Res. 2022, 27, 210063. [Google Scholar] [CrossRef]
- Zhou, S.; He, H.; Zhang, L.; Zhao, W.; Wang, F. A Data-Driven Method to Monitor Carbon Dioxide Emissions of Coal-Fired Power Plants. Energies 2023, 16, 1646. [Google Scholar] [CrossRef]
- Mollo, M.; Kolesnikov, A.; Makgato, S. Simultaneous Reduction of NOx Emission and SOx Emission Aided by Improved Efficiency of a Once-Through Benson Type Coal Boiler. Energy 2022, 248, 123551. [Google Scholar] [CrossRef]
- Krzywański, J.; Nowak, W. Neurocomputing Approach for the Prediction of NOx Emissions from CFBC in Air-Fired and Oxygen-Enriched Atmospheres. J. Power Technol. 2017, 97, 75–84. [Google Scholar]
- Lv, Y.; Liu, J.; Yang, T.; Zeng, D. A Novel Least Squares Support Vector Machine Ensemble Model for NOx Emission Prediction of a Coal-Fired Boiler. Energy 2013, 55, 319–329. [Google Scholar] [CrossRef]
- Krzywanski, J.; Nowak, W. Artificial Intelligence Treatment of SO2 Emissions from CFBC in Air and Oxygen-Enriched Conditions. J. Energy Eng. 2016, 142, 04015017. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, J.P.; Zheng, L.G.; Wang, C.L.; Cen, K.F. Modeling NOx Emissions from Coal-Fired Utility Boilers Using Support Vector Regression with Ant Colony Optimization. Eng. Appl. Artif. Intell. 2012, 25, 147–158. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, Z. The Multi-Objective Optimization of Combustion System Operations Based on Deep Data-Driven Models. Energy 2019, 182, 37–47. [Google Scholar] [CrossRef]
- Tan, P.; Xia, J.; Zhang, C.; Fang, Q.; Chen, G. Modeling and Optimization of NOX Emission in a Coal-Fired Power Plant Using Advanced Machine Learning Methods. Energy Procedia 2014, 61, 377–380. [Google Scholar] [CrossRef]
- Saito, T.; Fujiwara, K. Causal Analysis of Nitrogen Oxides Emissions Process in Coal-Fired Power Plant with LiNGAM. Front. Anal. Sci. 2023, 3, 1045324. [Google Scholar] [CrossRef]
- Adams, D.; Oh, D.-H.; Kim, D.-W.; Lee, C.-H.; Oh, M. Prediction of SOx–NOx Emission from a Coal-Fired CFB Power Plant with Machine Learning: Plant Data Learned by Deep Neural Network and Least Square Support Vector Machine. J. Clean. Prod. 2020, 270, 122310. [Google Scholar] [CrossRef]
- Ji, B.; Jiang, B.; Yuan, L.; Yu, C.; Zhou, G.; Zhao, Y.; Wang, S.; Wang, X. Experimental and Molecular Dynamics Simulation Study on the Influence of SDS and JFC Composite Ratios on Bituminous Coal Wettability. Process Saf. Environ. Prot. 2023, 174, 473–484. [Google Scholar] [CrossRef]
- Khaire, U.M.; Dhanalakshmi, R. Stability of Feature Selection Algorithm: A Review. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 1060–1073. [Google Scholar] [CrossRef]
- Hadash, S.; Willemsen, M.C.; Snijders, C.; IJsselsteijn, W.A. Improving Understandability of Feature Contributions in Model-Agnostic Explainable AI Tools. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, Orleans, LA, USA, 29 April–5 May 2022; pp. 1–9. [Google Scholar]
- Molnar, C.; König, G.; Bischl, B.; Casalicchio, G. Model-Agnostic Feature Importance and Effects with Dependent Features: A Conditional Subgroup Approach. Data Min. Knowl. Discov. 2023, 1–39. [Google Scholar] [CrossRef]
- Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation Importance: A Corrected Feature Importance Measure. Bioinformatics 2010, 26, 1340–1347. [Google Scholar] [CrossRef]
- Zafar, M.R.; Khan, N. Deterministic Local Interpretable Model-Agnostic Explanations for Stable Explainability. Mach. Learn. Knowl. Extr. 2021, 3, 525–541. [Google Scholar] [CrossRef]
- Nohara, Y.; Matsumoto, K.; Soejima, H.; Nakashima, N. Explanation of Machine Learning Models Using Improved Shapley Additive Explanation. In Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, New York, NY, USA, 7–10 September 2019; p. 546. [Google Scholar]
- Grabczewski, K.; Jankowski, N. Feature Selection with Decision Tree Criterion. In Proceedings of the Fifth International Conference on Hybrid Intelligent Systems (HIS’05), Rio de Janerio, Brazil, 6–9 November 2005; p. 6. [Google Scholar]
- Su, Y.; Dai, Y.; Zeng, Y.; Wei, C.; Chen, Y.; Ge, F.; Zheng, P.; Zhou, D.; Dral, P.O.; Wang, C. Interpretable Machine Learning of Two-Photon Absorption. Adv. Sci. 2023, 10, 2204902. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Fisher, A.; Rudin, C.; Dominici, F. All Models Are Wrong, but Many Are Useful: Learning a Variable’s Importance by Studying an Entire Class of Prediction Models Simultaneously. J. Mach. Learn. Res. 2019, 20, 1–81. [Google Scholar]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T. Xgboost: Extreme Gradient Boosting. R Package 2015, 1, 1–4. [Google Scholar]
- Sahour, H.; Gholami, V.; Torkaman, J.; Vazifedan, M.; Saeedi, S. Random Forest and Extreme Gradient Boosting Algorithms for Streamflow Modeling Using Vessel Features and Tree-Rings. Environ. Earth Sci. 2021, 80, 747. [Google Scholar] [CrossRef]
- Jiang, J.; Pan, H.; Li, M.; Qian, B.; Lin, X.; Fan, S. Predictive Model for the 5-Year Survival Status of Osteosarcoma Patients Based on the SEER Database and XGBoost Algorithm. Sci. Rep. 2021, 11, 5542. [Google Scholar] [CrossRef]
- Sinsomboonthong, S. Performance Comparison of New Adjusted Min-Max with Decimal Scaling and Statistical Column Normalization Methods for Artificial Neural Network Classification. Int. J. Math. Math. Sci. 2022, 2022, 3584406. [Google Scholar] [CrossRef]
- Liu, Z. A Method of SVM with Normalization in Intrusion Detection. Procedia Environ. Sci. 2011, 11, 256–262. [Google Scholar] [CrossRef]
- Miikkulainen, R.; Liang, J.; Meyerson, E.; Rawal, A.; Fink, D.; Francon, O.; Raju, B.; Shahrzad, H.; Navruzyan, A.; Duffy, N. Evolving Deep Neural Networks. In Artificial Intelligence in the Age of Neural Networks and Brain Computing; Elsevier: Amsterdam, The Netherlands, 2019; pp. 293–312. [Google Scholar]
Property | Description | Unit |
---|---|---|
Estimated calorific value | Calorific value is a measure of the heating ability of coal which is dependent on the inherent moisture, surface moisture, ash, and minerals from coal mixture | kcal/kg |
Total moisture | Natural moisture contained inside coal and moisture attached to the surface of coal | % |
SO2 | Percentage of SO2 | % |
Coal fineness | An index indicating the difficulty of crushing coal | Hardgrove grindability index (HGI) |
Volatile matter | The non-water gases formed from a coal sample during heating | % |
Ash | The powdery residue left after the burning of coal | % |
Fixed carbon | The solid combustible residue that remains after a coal particle is heated and the volatile matter is expelled | % |
Carbon | Percentage of carbon | % |
Nitrogen | Percentage of nitrogen | % |
SiO2 | As a type of oxidizing mineral, the weight percentage of SiO2 in coal ash | wt% |
CaO | As a type of oxidizing mineral, the weight percentage of CaO in coal ash | wt% |
Ignition point | The lowest temperature at which it starts to burn itself | °C |
Initial deformation temperature | Temperature of coal deformation | °C |
Granularity | The percentage of ground particles with size less than 2 mm | wt% |
Feature Importance Score for NOx by XGBoost | Feature Importance Score for NOx by Random Forest | Feature Importance Score for SOx by XGBoost | Feature Importance Score for SOx by Random Forest | ||||
---|---|---|---|---|---|---|---|
Feature | Weight | Feature | Weight | Feature | Weight | Feature | Weight |
Volatile matter | 0.2973 ± 0.0653 | Estimated calorific value | 0.2851 ± 0.0634 | SO2 | 0.4793 ± 0.1761 | SO2 | 0.6112 ± 0.1884 |
Estimated calorific value | 0.2689 ± 0.0785 | Ignition point | 0.2651 ± 0.0731 | Estimated calorific value | 0.1401 ± 0.0360 | Estimated calorific value | 0.123 ± 0.0419 |
Total moisture | 0.1195 ± 0.0881 | Volatile matter | 0.2403 ± 0.0477 | Ignition point | 0.1287 ± 0.0764 | Ignition point | 0.0838 ± 0.0486 |
SO2 | 0.1185 ± 0.0189 | SO2 | 0.1405 ± 0.0197 | Initial deformation temperature | 0.0597 ± 0.0278 | Granularity | 0.042 ± 0.0349 |
Ignition point | 0.1057 ± 0.0723 | Carbon | 0.0714 ± 0.0425 | SiO2 | 0.0520 ± 0.0390 | Initial deformation temperature | 0.0420 ± 0.0191 |
Granularity | 0.0551 ± 0.0164 | Total moisture | 0.0676 ± 0.1151 | Granularity | 0.0360 ± 0.0616 | Total moisture | 0.0192 ± 0.0108 |
Fixed carbon | 0.046 ± 0.0419 | Fixed carbon | 0.0546 ± 0.0454 | Coal fineness | 0.0217 ± 0.0176 | Volatile matter | 0.017 ± 0.0090 |
Ash | 0.0399 ± 0.0244 | Coal fineness | 0.0497 ± 0.0142 | Fixed carbon | 0.0130 ± 0.0287 | SiO2 | 0.0148 ± 0.0216 |
Coal fineness | 0.0387 ± 0.0425 | Granularity | 0.0448 ± 0.0159 | Carbon | 0.0121 ± 0.0181 | Coal fineness | 0.0139 ± 0.0077 |
Carbon | 0.0352 ± 0.0266 | Ash | 0.0276 ± 0.0116 | Volatile matter | 0.006 ± 0.0241 | Ash | 0.0124 ± 0.0029 |
Initial deformation temperature | 0.0308 ± 0.0252 | SiO2 | 0.0194 ± 0.0113 | Ash | 0.0061 ± 0.0071 | Carbon | 0.0121 ± 0.0029 |
CaO | 0.0157 ± 0.0210 | Nitrogen | 0.0074 ± 0.0040 | Total moisture | 0.0027 ± 0.0151 | CaO | 0.0048 ± 0.0038 |
Nitrogen | −0.0052 ± 0.0043 | CaO | 0.0066 ± 0.0050 | CaO | −0.0021 ± 0.0116 | Fixed carbon | 0.0003 ± 0.0127 |
SiO2 | −0.0172 ± 0.0184 | Initial deformation temperature | 0.0022 ± 0.0024 | Nitrogen | −0.0035 ± 0.0026 | Nitrogen | −0.0008 ± 0.0010 |
Index No. | Input Data for NOx | Output Data | Input Data for SOx | Output Data | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Estimated Calorific Value | Total Moisture | SO2 | Volatile Matter | Ignition Point | NOx | Estimated Calorific Value | SO2 | Ignition Point | SOx | |
1 | 0.73 | −1.01 | 0.43 | −0.5 | −0.56 | 94.14 | 0.73 | 0.43 | −0.56 | 396.4 |
2 | −0.55 | −0.41 | −0.51 | 0.5 | −0.79 | 88.20 | −0.55 | −0.51 | −0.79 | 420.32 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
587 | 0.11 | −0.31 | −1.1 | 0.72 | 0.8 | 45.72 | 0.11 | −1.1 | 0.8 | 327.14 |
588 | 0.11 | −0.31 | −1.1 | 0.72 | 0.8 | 45.54 | 0.11 | −1.1 | 0.8 | 268.78 |
Model | Model Parameters | Result | |||||
---|---|---|---|---|---|---|---|
SOx | NOx | ||||||
XGBoost | N_estimators | Learning_rate | Gamma | Subsample | Max_depth | MAPE (%) | |
XG1 | 100 | 0.08 | 0 | 0.75 | 7 | 24.45 | 24.10 |
XG 2 | 50 | 0.08 | 0 | 0.75 | 7 | 23.12 | 23.13 |
XG3 | 50 | 0.08 | 0 | 0.75 | 5 | 22.65 | 22.63 |
Random Forest | N_estimators | Min_samples_leaf | Min_samples_split | Max_depth | MAPE (%) | ||
RF1 | 200 | 8 | 8 | 8 | 25.28 | 21.74 | |
RF 2 | 100 | 8 | 8 | 4 | 24.98 | 20.94 | |
RF3 | 100 | 4 | 8 | 2 | 24.71 | 19.82 | |
DNN | Activation Function | Layer | Drop Out | Optimizer | Weight Initialization | MAPE (%) | |
D1 | Relu | (number of input variables, 15, 30, 60, 30, 15, 5, 1) | 0.2 | AdamW | He initialization | 15.83 | 10.65 |
D2 | Relu | (number of input variables, 9, 18, 36, 18, 9, 9, 1) | None | Adam | He initialization | 7.1 | 7.06 |
D3 | Relu | (number of input variables, 15, 30, 60, 30, 15, 5, 1) | None | AdamW | He initialization | 7.75 | 5.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
So, M.S.; Kibet, D.; Woo, T.K.; Kim, S.-J.; Shin, J.-H. Prediction of SOx-NOx Emission in Coal-Fired Power Plant Using Deep Neural Network. Machines 2023, 11, 1042. https://doi.org/10.3390/machines11121042
So MS, Kibet D, Woo TK, Kim S-J, Shin J-H. Prediction of SOx-NOx Emission in Coal-Fired Power Plant Using Deep Neural Network. Machines. 2023; 11(12):1042. https://doi.org/10.3390/machines11121042
Chicago/Turabian StyleSo, Min Seop, Duncan Kibet, Tae Kyeong Woo, Seong-Joon Kim, and Jong-Ho Shin. 2023. "Prediction of SOx-NOx Emission in Coal-Fired Power Plant Using Deep Neural Network" Machines 11, no. 12: 1042. https://doi.org/10.3390/machines11121042
APA StyleSo, M. S., Kibet, D., Woo, T. K., Kim, S. -J., & Shin, J. -H. (2023). Prediction of SOx-NOx Emission in Coal-Fired Power Plant Using Deep Neural Network. Machines, 11(12), 1042. https://doi.org/10.3390/machines11121042