Embedded Model Predictive Control of Tankless Gas Water Heaters to Enhance Users’ Comfort
Abstract
:1. Introduction
2. Methods
2.1. System Modeling
2.1.1. Nonlinear Model
2.1.2. Linear Model
2.2. Tools and Methodology
2.2.1. Matlab and Simulink
2.2.2. Hardware-in-the-Loop Platform
2.2.3. Microcontrollers
2.2.4. Performance Evaluation Metrics
2.3. Temperature Controllers
2.3.1. Feedforward PID
2.3.2. Model Predictive Control
2.3.3. Adaptive MPC
3. Results and Discussion
3.1. Simulation Results
3.2. Embedded Control Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
aMPC | Adaptive MPC |
ECU | Electronic control unit |
FFPID | Feedforward with feedback control |
HIL | Hardware-in-the-loop |
ISE | Integral squared error |
MD | Measured disturbance |
MO | Measured output |
MPC | Model predictive control |
MV | Manipulated variable |
PID | Proportional-integral-derivative |
QP | Quadratic programming |
TGWH | Tankless gas water heaters |
Nomenclature
A | State matrix |
B | Input matrix |
c | Specific heat |
C | Output matrix |
C1 | Auxiliar constant |
D | Feedthrough matrix |
fcomfort | Comfort index |
J | Cost function |
L | Length |
Thermal power | |
Volumetric flow rate | |
R | Radius |
T | Temperature |
t | Time |
u | Input vector |
x | State vector |
ρ | Density |
References
- International Energy Agency (IEA). World Energy Outlook 2022; IEA: Paris, France, 2022. [Google Scholar]
- European Statistics-Eurostat. Energy, Transport and Environment Statistics—2020 Edition; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-20736-8. [Google Scholar]
- Ma, J.; Qin, S.J.; Salsbury, T. Application of Economic MPC to the Energy and Demand Minimization of a Commercial Building. J. Process Control 2014, 24, 1282–1291. [Google Scholar] [CrossRef]
- Rastegarpour, S.; Scattolini, R.; Ferrarini, L. Performance Improvement of an Air-to-Water Heat Pump through Linear Time-Varying MPC with Adaptive COP Predictor. J. Process Control 2021, 99, 69–78. [Google Scholar] [CrossRef]
- Ehtiwesh, I.A.S.; Quintã, A.F.; Ferreira, J.A.F. Predictive Control Strategies for Optimizing Temperature Stability in Instantaneous Hot Water Systems. Sci. Technol. Built Environ. 2021, 27, 679–690. [Google Scholar] [CrossRef]
- Quintã, A.F.; Ferreira, J.A.F.; Ramos, A.; Martins, N.A.D.; Costa, V.A.F. Simulation Models for Tankless Gas Water Heaters. Appl. Therm. Eng. 2019, 148, 944–952. [Google Scholar] [CrossRef]
- Costa, V.; Ferreira, J.; Guilherme, D. Modeling and Simulation of Tankless Gas Water Heaters to Reduce Temperature Overshoots and Undershoots. In Proceedings of the 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT 2016), Online, 8–10 August 2022; HEFAT: Málaga, Spain, 2016; pp. 1404–1409. [Google Scholar]
- Quintã, A.F.; Ehtiwesh, I.; Martins, N.; Ferreira, J.A.F. Gain Scheduling Model Predictive Controller Design for Tankless Gas Water Heaters with Time-Varying Delay. Appl. Therm. Eng. 2022, 213, 118669. [Google Scholar] [CrossRef]
- Wang, L.; Zang, H.; Ning, Y. The Gas Water Heater Control System Design Based on Fuzzy Control. In Proceedings of the 2011 International Conference on Electric Information and Control Engineering, Wuhan, China, 15–17 April 2011; pp. 840–843. [Google Scholar]
- Haissig, C.; Woessner, M. An Adaptive Fuzzy Algorithm for Domestic Hot Water Temperature Control of a Combi-Boiler. HVAC R Res. 2000, 6, 117–134. [Google Scholar] [CrossRef]
- Laurencio-Molina, J.C.; Salazar-Garcia, C. Design of an Artificial Neural Network Controller for a Tankless Water Heater By Using a Low-Profile Embedded System. In Proceedings of the 2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), San Carlos, Costa Rica, 18–20 July 2018; pp. 1–9. [Google Scholar]
- Kumar, R.; Vardhan, H.; Bharadwaj, S. Temperature Control System Using Artificial Neural Network. Int. J. Eng. Res. Appl. 2013, 3, 672–675. [Google Scholar]
- Vieira, J.A.; Dias, F.M.; Mota, A.M. Hybrid Neuro-Fuzzy Network-Priori Knowledge Model in Temperature Control of a Gas Water Heater System. In Proceedings of the Fifth International Conference on Hybrid Intelligent Systems (HIS’05), Rio de Janeiro, Brazil, 6–9 November 2005; Volume 2005, pp. 116–121. [Google Scholar]
- Xu, K.; Qiu, X.; Li, X.; Xu, Y. A Dynamic Neuro-Fuzzy Controller for Gas-Fired Water Heater. In Proceedings of the 2008 Fourth International Conference on Natural Computation, Jinan, China, 18–20 October 2008; Volume 7 OP-200, pp. 240–244. [Google Scholar]
- Claquin; Carriere; Rocaries. Modelling and Application of Adaptive Control to a Gas Heater. In Proceedings of the IEEE International Conference on Control and Applications CCA-94, Glasgow, Scotland, 8–12 August 1994; Volume 2, pp. 927–932. [Google Scholar]
- Henze, G.; Yuill, D.; Coward, A. Development of a Model Predictive Controller for Tankless Water Heaters. HVAC R Res. 2009, 15, 3–23. [Google Scholar] [CrossRef]
- Yuill, D. Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater; Pittsburgh, P.A., Morgantown, W.V., Eds.; Building Solutions Incorporated: Dallas, TX, USA, 2008. [Google Scholar]
- Yuill, D.P.; Coward, A.H.; Henze, G.P. Performance Comparison of Control Methods for Tankless Water Heaters. HVAC R Res. 2010, 16, 677–690. [Google Scholar] [CrossRef]
- Jin, X.; Maguire, J.; Christensen, D. Model Predictive Control of Heat Pump Water Heaters for Energy Efficiency. In Proceedings of the ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, USA, 17–22 August 2014; pp. 133–145. [Google Scholar]
- Wanjiru, E.M.; Sichilalu, S.M.; Xia, X. Model Predictive Control of Heat Pump Water Heater-Instantaneous Shower Powered with Integrated Renewable-Grid Energy Systems. Appl. Energy 2017, 204, 1333–1346. [Google Scholar] [CrossRef]
- Tarragona, J.; Fernández, C.; de Gracia, A. Model Predictive Control Applied to a Heating System with PV Panels and Thermal Energy Storage. Energy 2020, 197, 117229. [Google Scholar] [CrossRef]
- Luo, J.; Yang, K.; Zhao, Z.; Chen, G.; Wang, Q. Experimental Investigations on the Performance of a Single-Stage Compound Air-Source Heat Pump Using CO2/R600a in Cold Regions. Appl. Therm. Eng. 2022, 205, 118050. [Google Scholar] [CrossRef]
- Hakkaki-Fard, A.; Aidoun, Z.; Ouzzane, M. Improving Cold Climate Air-Source Heat Pump Performance with Refrigerant Mixtures. Appl. Therm. Eng. 2015, 78, 695–703. [Google Scholar] [CrossRef]
- Garcia, R.F.; Chua, A. An Innovative Control System of a Hybrid Tankless Water Heaters Using LabVIEW. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1109, 012018. [Google Scholar] [CrossRef]
- Bobál, V.; Kubalcik, M.; Dostal, P.; Matejicek, J. Adaptive Predictive Control of Time-Delay Systems. Comput. Math. Appl. 2013, 66, 165–176. [Google Scholar] [CrossRef]
- Holiš, R.; Bobál, V. MATLAB Toolbox for Self-Tuning Predictive Control of Time-Delayed Systems. In Proceedings of the 32nd European Conference on Modelling and Simulation, Wilhelmshaven, Germany, 25 May 2018; Nolle, L., Burger, A., Tholen, C., Werner, J., Eds.; ECMS: Wilhelmshaven, Germany, 2018; pp. 205–211. [Google Scholar]
- Rossiter, J.A. A First Course in Predictive Control, 2nd ed.; Control Series; CRC Press: New York, NY, USA, 2018; ISBN 9781315104126. [Google Scholar]
- Löhr, Y.; Wolf, D.; Pollerberg, C.; Hörsting, A.; Mönnigmann, M. Supervisory Model Predictive Control for Combined Electrical and Thermal Supply with Multiple Sources and Storages. Appl. Energy 2021, 290, 116742. [Google Scholar] [CrossRef]
- Široký, J.; Oldewurtel, F.; Cigler, J.; Prívara, S. Experimental Analysis of Model Predictive Control for an Energy Efficient Building Heating System. Appl. Energy 2011, 88, 3079–3087. [Google Scholar] [CrossRef]
- Bird, M.; Daveau, C.; O’Dwyer, E.; Acha, S.; Shah, N. Real-World Implementation and Cost of a Cloud-Based MPC Retrofit for HVAC Control Systems in Commercial Buildings. Energy Build. 2022, 270, 112269. [Google Scholar] [CrossRef]
- Rodrigues, E.M.G.; Godina, R.; Pouresmaeil, E.; Ferreira, J.R.; Catalão, J.P.S. Domestic Appliances Energy Optimization with Model Predictive Control. Energy Convers. Manag. 2017, 142, 402–413. [Google Scholar] [CrossRef]
- Chaber, P. Implementation of Dynamic Matrix Control Algorithm Using a Microcontroller with Fixed-Point Arithmetic. In Challenges in Automation, Robotics and Measurement Techniques; Szewczyk, R., Zieliński, C., Kaliczyńska, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 51–61. ISBN 978-3-319-29357-8. [Google Scholar]
- Kaleli, A. Development of the Predictive Based Control of an Autonomous Engine Cooling System for Variable Engine Operating Conditions in SI Engines: Design, Modeling and Real-Time Application. Control Eng. Pract. 2020, 100, 104424. [Google Scholar] [CrossRef]
- Chaber, P.; Lawrynczuk, M. AutoMATiC: Code Generation of Model Predictive Control Algorithms for Microcontrollers. IEEE Trans. Ind. Inform. 2020, 16, 4547–4556. [Google Scholar] [CrossRef]
- Ferreau, H.J.; Kirches, C.; Potschka, A.; Bock, H.G.; Diehl, M. QpOASES: A Parametric Active-Set Algorithm for Quadratic Programming. Math. Program. Comput. 2014, 6, 327–363. [Google Scholar] [CrossRef]
- MOSEK ApS. The MOSEK Optimization Toolbox for MATLAB Manual; MOSEK ApS: Copenhagen, Denmark, 2023. [Google Scholar]
- Domahidi, A.; Chu, E.; Boyd, S. ECOS: An SOCP Solver for Embedded Systems. In Proceedings of the 2013 European Control Conference (ECC), Zurich, Switzerland, 17–19 July 2013; pp. 3071–3076. [Google Scholar]
- Stellato, B.; Banjac, G.; Goulart, P.; Bemporad, A.; Boyd, S. OSQP: An Operator Splitting Solver for Quadratic Programs. Math. Program. Comput. 2020, 12, 637–672. [Google Scholar] [CrossRef]
- Cimini, G.; Bernardini, D.; Levijoki, S.; Bemporad, A. Embedded Model Predictive Control With Certified Real-Time Optimization for Synchronous Motors. Trans. Control Syst. Technol. 2021, 29, pp. 893–900. [Google Scholar] [CrossRef]
- Mattingley, J.; Boyd, S. CVXGEN: A Code Generator for Embedded Convex Optimization. Optim. Eng. 2012, 13, 1–27. [Google Scholar] [CrossRef]
- Mattingley, J.; Wang, Y.; Boyd, S. Receding Horizon Control. IEEE Control Syst. 2011, 31, 52–65. [Google Scholar] [CrossRef]
- Kunz, K.; Huck, S.M.; Summers, T.H. Fast Model Predictive Control of Miniature Helicopters. In Proceedings of the 2013 European Control Conference (ECC), Zurich, Switzerland, 17–19 July 2013; pp. 1377–1382. [Google Scholar]
- Kufoalor, D.K.M.; Aaker, V.; Johansen, T.A.; Imsland, L.; Eikrem, G.O. Automatically Generated Embedded Model Predictive Control: Moving an Industrial PC-Based MPC to an Embedded Platform. Optim. Control Appl. Methods 2015, 36, 705–727. [Google Scholar] [CrossRef]
- Domahidi, A.; Zgraggen, A.U.; Zeilinger, M.N.; Morari, M.; Jones, C.N. Efficient Interior Point Methods for Multistage Problems Arising in Receding Horizon Control. In Proceedings of the 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, USA, 10–13 December 2012; pp. 668–674. [Google Scholar]
- Binder, B.J.T.; Kufoalor, D.K.M.; Johansen, T.A. Scalability of QP Solvers for Embedded Model Predictive Control Applied to a Subsea Petroleum Production System. In Proceedings of the 2015 IEEE Conference on Control Applications (CCA), Sydney, Australia, 21–23 September 2015; pp. 1173–1178. [Google Scholar]
- Giselsson, P. Improved Fast Dual Gradient Methods for Embedded Model Predictive Control. IFAC Proc. Vol. 2014, 47, 2303–2309. [Google Scholar] [CrossRef]
- Andersson, J.A.E.; Gillis, J.; Horn, G.; Rawlings, J.B.; Diehl, M. CasADi: A Software Framework for Nonlinear Optimization and Optimal Control. Math. Program. Comput. 2019, 11, 1–36. [Google Scholar] [CrossRef]
- Zometa, P.; Kogel, M.; Findeisen, R. ΜAO-MPC: A Free Code Generation Tool for Embedded Real-Time Linear Model Predictive Control. In Proceedings of the 2013 American Control Conference, Washington, DC, USA, 17–19 June 2013; pp. 5320–5325. [Google Scholar]
- Englert, T.; Völz, A.; Mesmer, F.; Rhein, S.; Graichen, K. A Software Framework for Embedded Nonlinear Model Predictive Control Using a Gradient-Based Augmented Lagrangian Approach (GRAMPC). Optim. Eng. 2019, 20, 769–809. [Google Scholar] [CrossRef]
- Frison, G.; Sorensen, H.H.B.; Dammann, B.; Jorgensen, J.B. High-Performance Small-Scale Solvers for Linear Model Predictive Control. In Proceedings of the 2014 European Control Conference (ECC), Strasbourg, France, 24–27 June 2014; pp. 128–133. [Google Scholar]
- Houska, B.; Ferreau, H.J.; Diehl, M. ACADO Toolkit-An Open-Source Framework for Automatic Control and Dynamic Optimization. Optim. Control Appl. Methods 2011, 32, 298–312. [Google Scholar] [CrossRef]
- Herceg, M.; Kvasnica, M.; Jones, C.N.; Morari, M. Multi-Parametric Toolbox 3.0. In Proceedings of the 2013 European Control Conference (ECC), Zurich, Switzerland, 17–19 July 2013; pp. 502–510. [Google Scholar]
- Jackson, B.E.; Punnoose, T.; Neamati, D.; Tracy, K.; Jitosho, R.; Manchester, Z. ALTRO-C: A Fast Solver for Conic Model-Predictive Control. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 7357–7364. [Google Scholar]
- Frison, G.; Kufoalor, D.K.M.; Imsland, L.; Jorgensen, J.B. Efficient Implementation of Solvers for Linear Model Predictive Control on Embedded Devices. In Proceedings of the 2014 IEEE Conference on Control Applications (CCA), Antibes/Nice, France, 8-10 October 2014; pp. 1954–1959. [Google Scholar]
- Quintã, A.F.; Oliveira, J.D.; Ferreira, J.A.F.; Costa, V.A.F.; Martins, N. Virtual Test Bench for the Design of Control Strategies for Water Heaters. J. Therm. Sci. Eng. Appl. 2022, 14, 051004. [Google Scholar] [CrossRef]
- Camacho, E.F.; Bordons, C. Model Predictive Control, 2nd ed.; Advanced Textbooks in Control and Signal Processing; Springer: London, UK, 2007; ISBN 978-1-85233-694-3. [Google Scholar]
- Johnson, G.; Beausoleil-Morrison, I. The Calibration and Validation of a Model for Predicting the Performance of Gas-Fired Tankless Water Heaters in Domestic Hot Water Applications. Appl. Energy 2016, 177, 740–750. [Google Scholar] [CrossRef]
- Oliveira, J.D. Development of a Virtual Bench for Simulation and Monitoring of Water Heating Devices. Master’s Thesis, University of Aveiro, Aveiro, Portugal, 2019. [Google Scholar]
- Pärisch, P. Komfortbewertung des Regelverhaltens von Frischwasserstationen Auf Basis von Temperaturgradienten. In Proceedings of the 27. Symposium Thermische Solarenergie, Bad Staffelstein, Germany, 10 May 2017. [Google Scholar]
- Pärisch, P. Comfort Assessment of Tankless Water Heaters: Review and Suggestions. In Proceedings of the International Energy Agency Solar Heating & Cooling Programme (IEA SHC) International Conference on Solar Heating and Cooling for Buildings and Industry, Santiago, Chile, 4–7 November 2019; pp. 1–12. [Google Scholar]
- Oh, T.H.; Kim, J.W.; Son, S.H.; Jeong, D.H.; Lee, J.M. Multi-Strategy Control to Extend the Feasibility Region for Robust Model Predictive Control. J. Process Control 2022, 116, 25–33. [Google Scholar] [CrossRef]
- Kumar, K.; Patwardhan, S.C.; Noronha, S. Development of Adaptive Dual Predictive Control Schemes Based on Wiener–Hammerstein Models. J. Process Control 2022, 119, 68–85. [Google Scholar] [CrossRef]
- Martínez-García, F.; Badawy, G.; Kheradmandi, M.; Down, D.G. Adaptive Predictive Control of a Data Center Cooling Unit. Control Eng. Pract. 2021, 107, 104674. [Google Scholar] [CrossRef]
- Mendis, P.; Wickramasinghe, C.; Narayana, M.; Bayer, C. Adaptive Model Predictive Control with Successive Linearization for Distillate Composition Control in Batch Distillation. In Proceedings of the 2019 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 3–5 July 2019; pp. 366–369. [Google Scholar]
MCU | Data Width (Bits) | CPU | Clock Speed (MHz) | Flash Memory (kB) | SRAM (kB) | Operation Voltage (V) | ADC (Bits) | DAC (Bits) |
---|---|---|---|---|---|---|---|---|
Atmega2560 | 8 | RISC-based | 16 | 256 | 8 | 5 | 10 | N/A |
Atmel SAMD21 | 32 | Cortex®-M0+ | 48 | 256 | 32 | 3.3 | 12 | 10 |
q (L/min) | Controller | Rise Time (s) | Settling Time (2.5%) (s) | Overshoot (%) | Max (°C) | ISE (°C2/s) | fcomfort (%) |
---|---|---|---|---|---|---|---|
3.65 | FFPID | 18.7 | 38.6 | 8.0 | 48.6 | 10,976 | 35.6 |
MPC | 14.0 | 30.9 | 8.7 | 48.9 | 9926 | 51.7 | |
aMPC | 13.9 | 14.6 | 1.0 | 45.5 | 9852 | 68.2 | |
5.10 | FFPID | 14.3 | 28.7 | 6.8 | 48.0 | 8574 | 50.7 |
MPC | 12.2 | 13.0 | 0.7 | 45.3 | 8181 | 72.6 | |
aMPC | 12.2 | 13.0 | 0.6 | 45.3 | 8181 | 72.6 | |
6.55 | FFPID | 11.9 | 23.2 | 6.4 | 47.9 | 7246 | 59.4 |
MPC | 11.6 | 15.2 | 4.6 | 47.1 | 7298 | 71.2 | |
aMPC | 11.6 | 12.7 | 0.8 | 45.4 | 7289 | 75.9 |
Disturbance | Controller | Settling Time (2.5%) (s) | Undershoot/Overshoot (%) | Min/Max (°C) | ISE (°C2/s) | fcomfort (%) |
---|---|---|---|---|---|---|
Flow rate increase | FFPID | 11.9 | 24.0 | 34.2 | 353 | 85.8 |
MPC | 14.2 | 25.2 | 33.7 | 325 | 84.7 | |
aMPC | 10.5 | 25.2 | 33.6 | 318 | 88.1 | |
Flow rate decrease | FFPID | 55.1 | 30.8 | 58.9 | 1478 | 61.9 |
MPC | 44.2 | 32.7 | 59.7 | 828 | 59.3 | |
aMPC | 20.9 | 32.8 | 59.8 | 649 | 86.3 |
MCU | Controller | Flash Memory | SRAM Memory |
---|---|---|---|
Atmel SAMD21 | FFPID | 22,524 bytes (8.6%) | 2680 bytes (8.2%) |
MPC Ts = 250 ms|p = 35|m = 3|1 iteration|qin = 5 L/min | 53,836 bytes (20.5%) | 6568 bytes (20.0%) | |
Atmega2560 | FFPID | 8256 bytes (3.1%) | 788 bytes (9.6%) |
MPC Ts = 250 ms|p = 30|m = 3|1 iteration|qin = 8 L/min | 33,680 bytes (12.8%) | 7766 bytes (94.8%) |
MCU | q (L/min) | Controller | Rise Time (s) | Settling Time (2.5%) (s) | Overshoot (%) | Max (°C) | ISE (°C2/s) | fcomfort (%) |
---|---|---|---|---|---|---|---|---|
Atmel SAMD21 | 2.2 | FFPID | 29.1 | 49.8 | 3.3 | 46.5 | 16,284 | 33.7 |
MPC | 22.5 | 55.7 | 16.9 | 52.6 | 14,280 | 20.4 | ||
3.65 | FFPID | 18.5 | 35.1 | 5.4 | 47.4 | 10,723 | 40.3 | |
MPC | 14.7 | 30.6 | 8.6 | 48.9 | 9769 | 51.3 | ||
5.1 | FFPID | 14.2 | 27.9 | 7.3 | 48.3 | 8510 | 50.6 | |
MPC | 12.0 | 12.8 | 0.9 | 45.4 | 7861 | 74.4 | ||
6.55 | FFPID | 11.7 | 23.4 | 8.9 | 49.0 | 7151 | 59.2 | |
MPC | 11.5 | 23.6 | 5.1 | 47.3 | 7103 | 69.6 | ||
8 | FFPID | 11.5 | 21.5 | 4.8 | 47.2 | 6583 | 63.8 | |
MPC | 11.5 | 13.3 | 1.7 | 45.8 | 6590 | 76.0 | ||
At-mega 2560 | 2.2 | FFPID | 28.9 | 49.3 | 3.3 | 46.5 | 16,362 | 33.7 |
MPC | 22.8 | - | 16.1 | 52.2 | 14,711 | 17.2 | ||
3.65 | FFPID | 18.7 | 35.3 | 5.3 | 47.4 | 11,023 | 40.3 | |
MPC | 16.4 | 31.3 | 8.5 | 48.8 | 9801 | 44.0 | ||
5.1 | FFPID | 14.3 | 27.8 | 7.0 | 48.2 | 8634 | 52.1 | |
MPC | 12.5 | 24.7 | 5.0 | 47.3 | 8180 | 56.9 | ||
6.55 | FFPID | 11.8 | 23.4 | 8.8 | 49.0 | 7341 | 57.5 | |
MPC | 11.6 | 12.9 | 2.4 | 46.1 | 7266 | 72.8 | ||
8 | FFPID | 11.8 | 21.5 | 4.2 | 46.9 | 6846 | 67.1 | |
MPC | 11.6 | 13.5 | 0.8 | 45.4 | 6660 | 75.9 |
Disturbance | MCU | Controller | Settling Time (2.5%) (s) | Undershoot/Overshoot (%) | Min/Max (°C) | ISE (°C2/s) | fcomfort (%) |
---|---|---|---|---|---|---|---|
Flow rate increase | Atmel SAMD21 | FFPID | 19.3 | 25.5 | 33.5 | 422 | 79.0 |
MPC | 22.4 | 24.4 | 34.0 | 301 | 83.0 | ||
Atmega 2560 | FFPID | 19.0 | 25.5 | 33.5 | 425 | 79.0 | |
MPC | 10.7 | 24.5 | 34.0 | 305 | 88.0 | ||
Flow rate decrease | Atmel SAMD21 | FFPID | 37.4 | 31.8 | 59.3 | 1587 | 61.5 |
MPC | 43.4 | 31.7 | 59.3 | 762 | 60.9 | ||
Atmega 2560 | FFPID | 36.7 | 31.4 | 59.1 | 1519 | 61.5 | |
MPC | 46.5 | 31.1 | 59.0 | 800 | 65.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conceição, C.; Quintã, A.; Ferreira, J.A.F.; Martins, N.; Santos, M.P.S.d. Embedded Model Predictive Control of Tankless Gas Water Heaters to Enhance Users’ Comfort. Machines 2023, 11, 951. https://doi.org/10.3390/machines11100951
Conceição C, Quintã A, Ferreira JAF, Martins N, Santos MPSd. Embedded Model Predictive Control of Tankless Gas Water Heaters to Enhance Users’ Comfort. Machines. 2023; 11(10):951. https://doi.org/10.3390/machines11100951
Chicago/Turabian StyleConceição, Cheila, André Quintã, Jorge A. F. Ferreira, Nelson Martins, and Marco P. Soares dos Santos. 2023. "Embedded Model Predictive Control of Tankless Gas Water Heaters to Enhance Users’ Comfort" Machines 11, no. 10: 951. https://doi.org/10.3390/machines11100951
APA StyleConceição, C., Quintã, A., Ferreira, J. A. F., Martins, N., & Santos, M. P. S. d. (2023). Embedded Model Predictive Control of Tankless Gas Water Heaters to Enhance Users’ Comfort. Machines, 11(10), 951. https://doi.org/10.3390/machines11100951