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Abstract: Water heating is a significant part of households’ energy consumption, and tankless gas
water heaters (TGWHs) are commonly used. One of the limitations of these devices is the difficulty
of keeping hot water temperature setpoints when changes in water flow occur. As these changes are
usually unexpected, the controllers typically used in these devices cannot anticipate them, strongly
affecting the users’ comfort. Moreover, considerable water and energy waste are associated with the
long-time response to cold starts. This work proposes the development of a model predictive control
(MPC) to be deployed in low-cost hardware, such that the users’ thermal comfort and water savings
can be improved. Matlab/Simulink were used to develop, validate and automatically generate
C code for implementing the controller in microcontroller-based systems. Hardware-in-the-loop
simulations were performed to evaluate the performance of the MPC algorithm in 8-bit and 32-bit
microcontrollers. A 6.8% higher comfort index was obtained using the implementation on the 32-bit
microcontroller compared to the current deployments; concerning the 8-bit microcontroller, a 4.2%
higher comfort index was achieved. These applications in low-cost hardware highlight that users’
thermal comfort can be successfully enhanced while ensuring operation safety. Additionally, the
environmental impact can be significantly reduced by decreasing water and energy consumption in
cold starts of TGWHs.

Keywords: tankless gas water heater; domestic hot water; thermal comfort; model predictive control;
hardware-in-the-loop simulation; low-cost embedded control

1. Introduction

The energy consumption of buildings includes electric energy for air heating and
cooling, lighting and domestic water heating, which account for around 30% of the global
energy consumption [1]. In the European Union, the energy required to heat domestic hot
water accounts for approximately 15% of the total energy consumption in the residential
sector [2]. As the electric efficiency of most buildings can be significantly increased, relevant
societal impacts can be obtained by reducing energy consumption [3,4]. Two approaches
have been proposed to promote energy savings: (i) by installing more energy-efficient equip-
ment in buildings; or (ii) by managing energy consumption efficiently using sophisticated
control strategies in automation systems [3].

Gas instantaneous heating devices are widely used in domestic hot water produc-
tion [5] and are essential for daily activities such as personal hygiene, cleaning, and bathing.
However, one of their limitations is the difficulty of keeping desired hot water temperature
setpoints when changes in water flow occur. These changes are usually very fast and
unpredictable, severely affecting the users’ perception of comfort. When the user imposes
a sudden increase in the hot water flow rate, tankless gas water heaters (TGWHs) are not
able to provide such flow, ensuring high-performance temperature control, which results
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in lower temperatures than the ones desired by users for some (non-negligible) time. This
scenario is identified as a temperature undershoot. A similar scenario occurs when a steady
flow is followed by a sudden reduction in the requested water flow, and a temperature
overshoot occurs [6]. Some of the latest and most advanced TGWHs include feedback
controllers with flow and temperature sensors. However, manufacturers currently use
control strategies that cannot provide high-performance responses to sudden changes in
water temperature for variations in the required flow rate, mainly because it is challenging
to deal with inertia, fast water flow changes and nonlinear fluid dynamics [6]. Tempera-
ture stabilisation of TGWHs has been pursued by including additional hardware, namely
bypass valves, mixing valves and reservoirs working as thermal capacitances [6,7]. The
classical feedback controllers, proportional and proportional-integral-derivative (PID), are
inappropriate for the temperature control of TGWHs [8]. Some authors propose using
advanced control techniques not requiring mathematical modelling, such as fuzzy logic
control [9,10] and artificial neural networks [11,12]. In this scope, neuro-fuzzy control was
also proposed to overcome the complexity of mathematical problems [13,14]. Classic model
predictive control (MPC), adaptive MPC and gain-schedule MPC have also been proposed
for water temperature control [5,8,15]. Yuill, Henze and Coward [16–18] focused on control
strategies for electric water heaters, from classical techniques, such as PID control, to more
advanced techniques, such as predictive control. For heat pumps, several studies have fo-
cused on predictive control to increase user comfort, improve energy efficiency, and reduce
costs and gaseous emissions [19–21], while other investigations have focused on research-
ing new refrigerant mixtures and regulating operating parameters [22,23]. Additionally,
Garcia and Chua [24] proposed using a hybrid model composed of a gas and electric water
heater for fast hot water supply responses while decreasing energy consumption and CO2
emissions. Finally, Bobál et al. [25,26] implemented a Smith predictor control approach for
heat exchangers. However, the Smith predictor requires an accurate estimation of models
and dead time; moreover, it is susceptible to the linearisation operating point and designed
for fixed time delays.

MPC is a promising strategy for the temperature control of buildings because it
can predict the dynamic states of processes [6,27]. Included are the optimisation of both
the thermal and electric energy supplies [28], minimisation of energy consumption or
operating costs [29], optimisation of energy costs of entire buildings [3], and optimisation
of temperatures for air-handling units [30] while ensuring thermal comfort. However, MPC
requires a significant computational overhead to solve complex and nonlinear problems,
such as those found in gas water heaters. Although predictive controllers have already
been designed to outperform the combined feedforward–feedback controllers usually
implemented in these devices [15,16,31], their use has yet to be established by manufacturers
of TGWHs due to the computational and memory resources required by MPC.

Modern microcontrollers can be used to implement complex control algorithms [32].
As the computing capacity of microprocessors increases and electronic control units (ECUs)
become more sophisticated, MPC has become feasible even for hard control applica-
tions [33]. However, MPC algorithms’ fast and efficient software development relies
on automatic code generation for quick code deployment on the selected hardware plat-
forms [34].

Several tools are available to solve MPC problems. First, quadratic programming (QP)
solvers, such as qpOASES [35], MOSEK [36], ECOS [37], OSQP [38] and ODYS QP [39], can
effectively be used. Second, tools such as CVXGEN [40–43], FORCES [44], FiOrdOs [45]
and QPGEN [46] were developed to optimise the code of quadratic programming solvers.
The CasADi [47] tool generates an efficient implementation of nonlinear optimisation
problems. Furthermore, tools such as µAO-MPC [48], GRAMPC [49], HPMPC [50] and
ACADO [51] also use QP solvers and perform optimised automatic code generation for
implementation in hardware. The MultiParametric Toolbox 3.0 [52] generates code for
implementation in software, although it is limited to explicit and constrained MPC designs
in which online optimisation is not required. The AutoMATiC tool [34] is a code-generation
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software package for implementing MPC algorithms on microcontrollers with low process-
ing and memory resources. The Matlab/Simulink environment also provides toolboxes for
automatic code generation. The Simulink Coder allows the generation and execution of C
code from Simulink models. Embedded Coder generates optimised code for embedded
systems, enabling hardware-in-the-loop (HIL) simulations.

Recent breakthroughs highlight that automatic code generation is an essential tool to
produce highly efficient solvers customised for specific problems, such as those requiring
the incorporation of MPC algorithms [53]. The key to overcoming challenges related to
devices with limited resources is to employ efficient algorithms with the ability to exploit
the computational performance capabilities of target platforms [54].

A preliminary simulation study was recently provided by Ehtiwesh et al. [5] regarding
the development of classic and adaptive MPCs to improve the performance of TGWHs in
transient regimes. Here, we propose for the first time the development and implementation
of predictive control techniques to be embedded into low-cost microcontrollers, ensuring
improved users’ thermal comfort and reduced water and energy waste in response to
temperature variations. First, we designed a classic MPC and an adaptive MPC, providing
improved performances compared to the results achieved by Ehtiwesh et al. [5]. A different
TGWH appliance was considered, and improvements were performed to solve implemen-
tation problems, namely in the linear model and the successive linearisation approach.
Then, the classic MPC controller was implemented in two low-cost microcontrollers using
automatic code-generation tools and HIL simulations. The static feedback–feedforward
controller was chosen as a benchmark, as TGWH manufacturers commonly use this control
technique. Significant improvements were achieved as the controllers were implemented
and tested on a real microcontroller with limited features. Finally, a new metric to analyse
the users’ comfort is also proposed. The investigation presented in this paper highlights
the significance of employing predictive control techniques to enhance the performance of
TGWH systems, with a focus on minimising environmental impact and enhancing user
comfort. As a result, this study contributes to the potential advancements in domestic
water heaters, particularly for residential applications.

2. Methods
2.1. System Modeling

Control strategies were tested using the TGWH Junkers Hydro 4600 F WTD10-4 KME
23 JU, Bosch Thermotechnology, Aveiro, Portugal, commercial and residential instantaneous
gas water heater. This non-condensation TGWH model has 22 kW maximum thermal power
and 8 L/min and 2.2 L/min maximum and minimum water flow rates, respectively. It
implements a thermostatic control strategy embedded in a microcontroller based on the
signals of electrical sensors for water flow rate, and inlet and outlet water temperatures.
The heating power is defined by the flow of an air–gas mixture, controlled by an electric
gas valve and an electric fan for the forced ventilation system. The temperature setpoint is
defined by the user in an LCD interface.

2.1.1. Nonlinear Model

The models used here were developed by our research team in previous works [6,7].
The lumped space approach was preferred over distributed analysis to meet the require-
ments for real-time simulation in HIL and implementation of MPC strategies in compu-
tationally limited embedded systems. The mathematical models result from applying
physical laws that describe, with minor deviations, the system’s dynamics. Each compo-
nent is modelled considering a control volume, for which mass and energy conservation
equations are established. The heat cell includes the gas combustion burner and energy
transfer to the water in the heat exchanger. A semi-empirical model, experimentally val-
idated, has been embraced to incorporate complex combustion processes. A two-way
proportional flow control valve was used to incorporate hot water demand, simulating
changes in user requests.



Machines 2023, 11, 951 4 of 20

The semi-empirical non-linear model for the TGWH heat cell and the model of the user
control valve were implemented in MATLAB/Simulink. The system plant was defined as
an interconnection of systems, in which the heat cell system is in cascade with the control
valve.

For the heat cell, assuming that water and metal are at approximately the same
temperature, and fluid density changes are negligible, the outlet water temperature T
(◦C) can be expressed by defining the energy conservation for a control volume, as in
Equation (1). The thermal power

.
Q (W) is defined by the mixing flow of gas and air. For

water, the specific heat cp,w (J/kg◦C−1), the density of water ρw (Kg/m3) and the volumetric
flow rate

.
q (m3/s) were used. C1 is an auxiliary constant that describes the heat capacity of

the heat cell, which was experimentally found to be 2218.1 J/◦C [55].

dT
dt

=

.
Q +

.
qρwcp,w(Tin − T)

C1
(1)

The plant model also incorporates time-varying delays, characteristic of thermal
processes, that vary significantly, causing severe difficulties in temperature control. A time
delay from thermal delivery is defined as a constant input delay, comprising the time since
a change in the air–gas mixture occurs until it affects the water temperature within the heat
cell. This delay was experimentally determined as 2.9 s [55]. The time delay due to the time
it takes the water to travel along the pipes and the heat exchanger (∆t (s)) was defined as
a time-varying output delay. This time delay is dependent on the water flow rate, and is
expressed by Equation (2),

∆t =
LπR2

i
.
q

(2)

where
.
q (m3/s) is the flow rate, and Ri (m) and L (m) are respectively the radius and length

of the circular section pipe.

2.1.2. Linear Model

MPC controllers require a model that describes the main dynamics of the plant system
in the operating region [56]. For the control of nonlinear systems, the plant model can
be linear or nonlinear; however, the use of a nonlinear model significantly increases the
complexity and computational load of the controller. A linear model’s disadvantage is that
the model mismatch typically increases with the distance to the linearisation operating
point.

A linear model established in our previous work [8] was used, as it requires low
computational load and, then, it requires a processing capability that can be provided by
low-cost microcontrollers. The model output was defined as the output water temperature
(T)’s deviation from the input temperature (Tin), as expressed by Equation (3).

∆T = T − Tin (3)

Combining Equations (1) and (3) and assuming that the inlet water temperature is
approximately constant (negligible inlet temperature changes were considered for model
simplification, as assumed in previous studies [5,8,9,15,57]), the output temperature devia-
tion was defined by Equation (4).

d∆T
dt

=

.
Q− .

qρwcp,w∆T
C1

(4)
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By applying a first-order Taylor series expansion, with operating points Q, q and ∆T,
and defining new deviation variables for the steady state (Q′, q′ and ∆T), the linear model
can be expressed by Equation (6).

Q
′
=

.
Q−Q q

′
=

.
q− q ∆T

′
= ∆T − ∆T (5)

d∆T′

dt
'

Q
′ − qρwcp,w∆T

′ − q′ρwcp,w∆T
C1

(6)

The linear model can be expressed as a state–space system, as in Equation (7). This
system has one state (x), two inputs (u), thermal power and flow rate, and one output
(y), the temperature deviation, as in Equation (8). The state (A), input (B), output (C) and
feedthrough (D) matrices are given in Equation (9).{ .

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(7)

x = [∆T′] u =

[
Q′

q′

]
y = [∆T′] (8)

A =
[−qρwcp,w

C1

]
B =

[
1

C1

−ρwcp,w∆T
C1

]
C = [1] D =

[
0 0

]
(9)

Time delays were included in this state–space model. The linearisation operating point
was defined as 5 L/min of flow rate (approximately the average operating flow rate), and
45 ◦C of setpoint temperature.

2.2. Tools and Methodology
2.2.1. Matlab and Simulink

Matlab/Simulink software (v. 2022a, MathWorks) was used to model, simulate and
analyse the developed temperature controllers. The MPC and the adaptive MPC controllers
were developed using the Model Predictive Control Toolbox.

2.2.2. Hardware-in-the-Loop Platform

To investigate the performance of the proposed controllers, an HIL platform was
established as a virtual test bench [58]. HIL methodologies are state-of-the-art procedures
for evaluating embedded systems, aiming to obtain more accurate results closer to the
actual scenario and simultaneously shorten the time of the product development process.
By simulating actual conditions, or even extreme conditions beyond the physical limits of
some of the elements, it is possible to evaluate the performance at reduced costs and time
and avoid possible safety problems as with combustion systems.

The HIL simulation process is described (Figure 1). A Simulink model of the controller
(feedforward, MPC or adaptive MPC) was created on the host computer. This model was
compiled into C code and transferred to the microcontroller. A nonlinear Simulink model
of the water heater plant was created on the virtual bench computer. To run the real-time
simulation, this model was also compiled in C code and transferred to the DS1104 R&D
controller board, which comprises I/O interfaces and a real-time processor connected
to a PC. The CLP1104 connector panel was used as the hardware interface between the
system virtual plant (implemented on the DS1104 R&D controller board) and the controller
(implemented in the microcontroller). The inlet and outlet water temperatures and flow
rate values were sent from the plant model as dSPACE analogical output signals and
connected to the microcontroller analogue inputs. The controller output was the thermal
power, defined as a microcontroller analogical output connected to a dSPACE input. An
application was developed in the dSPACE ControlDesk software (v. 6.3, dSPACE) to allow
the user–plant interface, namely, to control all experiments and monitor the plant variables.
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Figure 1. Schematic of HIL platform used to test the developed controller.

2.2.3. Microcontrollers

The MPC algorithm was embedded into two different low-cost microcontrollers: (i) the
Atmel SAMD21 microcontroller using a 32-bit ARM® Cortex®-M0+ processor; (ii) the At-
mega2560 microcontroller: a low-power Microchip 8-bit AVR® RISC-based microcontroller.
These microcontrollers are popular in a wide range of applications, such as home automa-
tion, consumer, metering, and industrial. The Atmega2560 is a more limited microcontroller
regarding computational speed and memory and lacks a DAC circuit. Table 1 summarises
the most relevant specifications for the analysed microcontrollers.

Table 1. Comparison of microcontrollers’ main specifications.

MCU
Data

Width
(Bits)

CPU
Clock
Speed
(MHz)

Flash
Memory

(kB)

SRAM
(kB)

Operation
Voltage (V)

ADC
(Bits)

DAC
(Bits)

Atmega2560 8 RISC-based 16 256 8 5 10 N/A
Atmel SAMD21 32 Cortex®-M0+ 48 256 32 3.3 12 10

2.2.4. Performance Evaluation Metrics

The performance of the controllers was evaluated according to the rise time, settling
time, temperature overshoot/undershoot percentage, the integral squared error (ISE), and
a comfort index (fcomfort (%)).

If rise and settling times are decreased, less water and energy are wasted, and greater
user’s comfort is achieved. In a cold start scenario, it is required to reduce the amount
of wasted water until the desired temperature is reached; in a flow change scenario, it
is required to reduce the amount of wasted water in response to temperature changes
that cause discomfort. The temperature overshoot/undershoot is relevant in flow change
scenarios, as they are related to the maximum discomfort during the temperature control
operation. For cold start tests, the rise time is defined as the time since the hot water
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demand starts, measured by the flow rate, until the outlet water temperature reaches 90%
of the setpoint temperature. The settling time is defined as the time since the flow rate
changes until the outlet water temperature enters and remains within a 2.5% tolerance of
the setpoint temperature. The ISE, computed during 60 s as expressed in Equation (10),
quantifies the distance between the outlet and setpoint temperatures. This metric was used
to quantify the accuracy of the response to a user’s comfort requirement, as it applies a
higher penalisation for higher magnitude errors and a lower one for smaller errors, which
is similar to human perception of water temperature [17,18].

ISE =
∫ 60

t=0

(
T − Tsetpoint

)2dt (10)

fcomfort (%) is a comfort index from 0 to 100% proposed by Pärisch [59,60] to quantify
the user perception of comfort for each individual event (index i). This comfort index is
computed as the ratio between the amount of heat to be delivered to water at a comfortable
temperature and the total amount of heat removed from the system during the first 60 s
after a disturbance occurs, as in Equation (11). It quantifies the efficiency by relating the
fraction of heat employed in unused water and wasted into the drain because the user is
uncomfortable with the total heat consumption in the evaluation period.

fcom f ort(i) =

∫ .
Qcom f ortabledt∫ .

Qtotaldt
(11)

Both temperature variations and gradients were used to calculate the comfort in-
dex, as established in Figure 2, according to a combination of the two criteria proposed
by Pärisch [59]. Indeed, variations can be experienced as uncomfortable even within a
comfortable temperature range: the perception threshold is gradient-dependent. Water is
considered comfortable, denoted by the colour green, when fluctuations are less than 2 ◦C
and simultaneously the gradient is inferior to 0.1 ◦C/s.
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Figure 2. Comfort criteria adopted: very comfortable (T < 1 (◦C)); comfortable (1 ≤ T < 2 (◦C) ∧ ∆T <
0.1 (◦C/s)); uncomfortable (2 ≤ T < 5 (◦C) ∧ 0.1 ≤ ∆T < 0.2 (◦C/s)); very uncomfortable (T ≥ 5 (◦C)
∨ ∆T ≥ 0.2 (◦C/s)).

2.3. Temperature Controllers

Three controllers were implemented using classic MPC, adaptive MPC and feedfor-
ward PID control strategies.

2.3.1. Feedforward PID

Manufacturers of TGWHs typically use the feedforward technique combined with
feedback control (FFPID). In this control strategy, the feedforward component uses the
system’s steady-state behaviour to predict the thermal power required to reach the setpoint
temperature, while the feedback component compensates for disturbances and modelling
errors. The theoretical thermal power, provided by the feedforward component, was
computed considering the measured volumetric water flow rate and the difference between
the inlet and setpoint temperatures, as expressed by Equation (12).

.
Qtheoretical =

.
qρwcp,w

(
Tsetpoint − Tin

)
(12)
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The feedback component was implemented with a discrete PID controller, in which
the error was computed between the theoretical thermal power, considering the desired
temperature, and the effective power, calculated considering the actual output temperature
and using Equation (13).

.
Qe f f ective =

.
qρwcp,w(Tout − Tin) (13)

The PID output was added to the theoretical power (feedforward component) to
compute the final control action (Figure 3). This controller was implemented in Mat-
lab/Simulink, and the PID parameters were optimised according to the Nelder–Mead
simplex algorithm.
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2.3.2. Model Predictive Control

The MPC controller receives or estimates the current state of the plant and calculates
the sequence of control actions that minimises a cost function over the horizon, solving a
conditional optimisation problem [56,61]. The cost function, predefined in the Matlab MPC
toolbox, was established by Equation (14). This cost function is the sum of four terms, each
focusing on a particular aspect of the controller’s performance.

J(zk) = Jy(zk) + Ju(zk) + J∆u(zk) + Jε(zk) (14)

where zk is the sequence of manipulated variables from sample k to k + p − 1, p is the
prediction horizon, and Jy, Ju, J∆u and Jε respectively represent the weighting in the cost
function for tracking the output variable, tracking the manipulated variables, changing of
the manipulated variables and constraint violation.

The MPC controller was designed with three inputs and one output. The controller in-
puts are: (i) a measured plant output (MO), corresponding to the output water temperature
variation; (ii) a measured disturbance (MD) relative to the volumetric flow rate; and (iii) the
desired reference. The controller output is the thermal power to be delivered to the plant.
Constraints were imposed on the manipulated variable (MV), ranging from 0 to 1 (0–100%).
The following MPC parameters were used: sample time Ts = 250 ms, prediction horizon
p = 50, control horizon m = 8. Ts = 250 ms was chosen as it is currently the sample time used
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in the feedback–feedforward controllers implemented by manufacturers of the TGWH used
in this study. Because this Ts is a short sample time, high values of control and prediction
horizons were required, which increases the computational cost and makes implementing
low-cost hardware difficult. Nevertheless, it improves the controller performance, ensuring
a faster response and lower temperature overshoots and undershoots. In real-time simu-
lations, these parameters are modified to improve the controller performance regarding
required memory and outlet water temperature control. The continuous linear model,
described in Section 2.1.2 and linearised for 5 L/min average operating flow rate, was
discretised, and the delays were absorbed in the model by converting it into model states.

2.3.3. Adaptive MPC

MPC control can predict future behaviours using a linear time-invariant dynamic
model. However, MPC’s performances can degrade over time if the plant is strongly
nonlinear or if its characteristics experience significant changes [62]. Adaptive MPC can
reduce the impact of this problem by adapting the prediction model to the current operating
conditions [63], even if it uses a fixed model structure. Adaptive MPC provides a new
linear model at each time interval under updated operating conditions. Therefore, it makes
predictions more accurate for the next time interval, unlike the classic MPC, which uses a
fixed internal model.

The successive linearisation approach was used to implement the adaptive MPC
(Figure 4). Given a set of nonlinear differential and algebraic equations describing the
system dynamics, a linear and time-invariant approximation is obtained under a specific
operating condition. To avoid the need to perform a numerical linearisation at each step, a
new parametrisation (of the matrices from the state–space model) is computed online, and
the controller is updated. Successive linearisations allow to combine the accuracy of the
nonlinear model with the robustness and ease of implementation of linear models [64]. The
adaptive function considers current sensor values for computing the updated state–space
linear model through its matrices and considering constant time delays according to the
water flow rate measure. In this study, the plant was initially linearised for the minimum
flow rate, 2.2 L/min. Since the model must have a fixed size, this flow rate, corresponding
to the maximum number of states, allows the states to be absorbed for all operating flow
rates. When higher flow rates are required, for example 6 L/min, not all the states will
be used, only those required to represent the time delays of the flow rate under study.
In addition to the three inputs used in the classic MPC, the model input signal was also
required to specify the prediction model. This updated linear prediction model and the
nominal operating point were specified as a bus signal for the controller input. The adaptive
function was computed at 250 ms sampling time. The cost function used by the adaptive
controller is the same as the one used in the classical MPC, Equation (14). The following
MPC parameters were established for the adaptive solution: Ts = 250 ms, p = 80 and m = 14.
Constraints were also imposed on MV: it was also defined between 0 to 1 (0–100%).
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3. Results and Discussion
3.1. Simulation Results

FFPID, classic MPC and adaptive MPC controllers were evaluated in three cold start
scenarios: 3.65 L/min, 5.10 L/min and 6.55 L/min. Two scenarios expressing maximum
water flow rate changes were analysed: from 2.2 L/min to 8 L/min and from 8 L/min to
2.2 L/min.

In the cold start scenarios (Figure 5, Table 2), the rise time and settling time decreased
as the flow rate increased, regardless of the control strategy, due to the dynamics and time
delays of the system. This pattern highlights that higher comfort indexes are achieved
for higher flow rates, which results in higher efficiencies and reduced waste of water and
energy throughout the non-comfortable period. A negligible overshoot was observed when
the adaptive MPC was used, differently from what was observed when the other controllers
were used, highlighting the predictive MPC behaviour. The lowest comfort index was
obtained using the FFPID control, whatever the simulated flow rate. The adaptive function
allowed higher comfort indexes and lower overshoots, except for the intermediate flow
rate of 5.10 L/min, where similar behaviours were observed between predictive controllers.
This occurred because the linear solution of the MPC was linearised for a 5 L/mi flow rate,
which contains the same delays as the average operating flow rate. Differently, the adaptive
control allowed to overcome performance losses related to operating points far from the
chosen nominal operating point.
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(a) 3.65 L/min; (b) 5.10 L/min; and (c) 6.55 L/min.

Table 2. Comparison of simulation results found for cold start using FFPID, linear MPC and adaptive
MPC (aMPC) controllers.

q (L/min) Controller Rise Time (s) Settling Time
(2.5%) (s)

Overshoot
(%) Max (◦C) ISE (◦C2/s) fcomfort (%)

3.65
FFPID 18.7 38.6 8.0 48.6 10,976 35.6
MPC 14.0 30.9 8.7 48.9 9926 51.7
aMPC 13.9 14.6 1.0 45.5 9852 68.2

5.10
FFPID 14.3 28.7 6.8 48.0 8574 50.7
MPC 12.2 13.0 0.7 45.3 8181 72.6
aMPC 12.2 13.0 0.6 45.3 8181 72.6

6.55
FFPID 11.9 23.2 6.4 47.9 7246 59.4
MPC 11.6 15.2 4.6 47.1 7298 71.2
aMPC 11.6 12.7 0.8 45.4 7289 75.9

In flow change scenarios (Figure 6, Table 3), temperature undershoots and overshoots
occurred due to intrinsic system delays, regardless of the control strategy. Concerning the
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flow rate increasing scenario, the FFPID provided a slightly lower undershoot relative to
responses obtained by two predictive control strategies. Shorter settling time was obtained
using adaptive MPC compared to both responses obtained by the FFPID and linear MPC
controller, which resulted in a higher comfort index found by the adaptive MPC. Indeed,
the feedforward–feedback technique showed higher ISE, demonstrating the predictive
controller’s superior ability to keep the temperature closer to the setpoint during the 60 s
after disturbances. Regarding the flow rate decreasing scenario, the FFPID also achieved a
lower overshoot. However, its settling time was about 11 s longer than the one obtained
using the linear MPC, which required about 23 s longer than the adaptive MPC. Lower
ISE was also observed for adaptive MPC compared to the responses of MPC and FFPID.
The classic MPC obtained the lowest comfort index, as its behaviour expressed undesirable
oscillations.
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Table 3. Comparison of simulation results found for flow rate changes using FFPID, linear MPC and
adaptive MPC (aMPC) controllers.

Disturbance Controller Settling Time
(2.5%) (s)

Undershoot/
Overshoot (%) Min/Max (◦C) ISE (◦C2/s) fcomfort (%)

Flow rate
increase

FFPID 11.9 24.0 34.2 353 85.8
MPC 14.2 25.2 33.7 325 84.7
aMPC 10.5 25.2 33.6 318 88.1

Flow rate
decrease

FFPID 55.1 30.8 58.9 1478 61.9
MPC 44.2 32.7 59.7 828 59.3
aMPC 20.9 32.8 59.8 649 86.3

A progressive improvement of comfort levels from the solution currently used in gas
water heaters to the adaptive MPC solution was achieved, as presented in the comfort
graphical representation illustrated in Figure 7. Average comfort indexes of 58.7%, 67.9%
and 78.2% were obtained for the FFPID, linear MPC and adaptive MPC controllers, respec-
tively. These results highlight that the predictive behaviour of the MPC controller holds
the potential to provide high-performance responses related to system delays, ensuring a
superior anticipation ability for fast power transitions after changes in the flow rate.
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The simulation results provide valuable insights into the performance of different
control strategies in various scenarios, namely for cold start and flow rate changes. Adopt-
ing adaptive MPC control strategies can significantly improve user comfort and energy
efficiency (assessed by lower rise time, settling time, and overshoots/undershoots), high-
lighting its superior predictive behaviour. In some scenarios, the linear MPC presents
similar performance, especially when the flow rate is close to the nominal operating point,
while FFPID control consistently performs less effectively. Regarding flow rate, higher
flow rates generally lead to improved comfort indexes and shorter rise times and settling
times, regardless of the control strategy, because of the associated shorter time delays.
In summary, these results suggest that by adopting predictive control strategies, more
efficient and responsive systems can be achieved, leading to higher comfort and lower
environmental impact.

3.2. Embedded Control Results

Implementing the MPC controller on low-cost microcontrollers can be a challenge
due to memory and computation time constraints, and to overcome these limitations,
optimisation strategies are essential. Results related to the linear optimised MPC solutions
for implementation on hardware are reported hereafter, exposing the strategy to imple-
ment them. The implementation of the adaptive MPC controller was not possible using
automatic code generation due to the high memory requirements. Therefore, the choice of
microcontroller depends on the specific requirements of the control system and available
computational resources.

The following strategy was used to implement the MPC controller in the Atmel
SAMD21 microcontroller: (a) using a suboptimal solution and restricting the number of
iterations in the MPC solver improves the controller responses, only requiring a 0.1%
increase in the required memory; (b) decreasing the control and prediction horizons im-
proves the controller response while significantly decreasing the memory requirements.
The MPC solution optimised for the Atmega2560 microcontroller exceeded its available
SRAM memory by 26.8%. Therefore, the strategy was successfully improved as follows:
(i) reducing the control and prediction horizons, which have a fundamental impact on
SRAM memory; (ii) linearising the plant for the maximum operating flow rate (8 L/min),
as this is the flow rate with the shortest delays, and the absorption and conversion to states
into system matrices decreases the plant model size.

Table 4 shows the Flash, SRAM memory and MPC parameters, for the Atmel SAMD21
and Atmega2560 microcontrollers. The FFPID controller is relatively light-weight in terms
of memory usage on both microcontrollers, as it consumes a small percentage of both Flash
and SRAM memory. The MPC controller requires significantly more memory, consuming a
higher percentage of Flash and SRAM memory, especially in the Atmega2560 microcon-
troller, which highlights the inherent complexity of implementing this control strategy in
low-cost hardware. Although FFPID is simple and relies on traditional control algorithms,
predictive controllers require solving optimisation problems at each control step, which
consumes a large amount of resources.
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Table 4. Comparison of memory required to implement the FFPID and MPC controllers in the Atmel
SAMD21 and Atmega2560 microcontrollers.

MCU Controller Flash Memory SRAM Memory

Atmel SAMD21

FFPID 22,524 bytes (8.6%) 2680 bytes (8.2%)
MPC

Ts = 250 ms|p = 35|m = 3|1
iteration|qin = 5 L/min

53,836 bytes (20.5%) 6568 bytes (20.0%)

Atmega2560

FFPID 8256 bytes (3.1%) 788 bytes (9.6%)
MPC

Ts = 250 ms|p = 30|m = 3|1
iteration|qin = 8 L/min

33,680 bytes (12.8%) 7766 bytes (94.8%)

The temperature responses in cold start scenarios (Figure 8) reveal faster responses of
the predictive control. Moreover, the predictive controller was also able to provide: lower
or equal rise times (Table 5); lower settling times, except for the minimum flow rate scenario
(2.2 L/min); lower overshoot, except for 2.2 L/min and 3.65 L/min; and consistent lower
ISE and higher comfort indexes (except for 2.2 L/min). Concerning the implementation in
the 32-bit microcontroller, the highest comfort difference occurred in the average flow rate,
which was approximately 24% higher for MPC. Moreover, a 15% higher comfort index was
obtained for the 8-bit microcontroller (when 6.55 L/min is requested).

Machines 2023, 11, x FOR PEER REVIEW 13 of 20 
 

 

Table 4. Comparison of memory required to implement the FFPID and MPC controllers in the Atmel 
SAMD21 and Atmega2560 microcontrollers. 

MCU Controller Flash Memory SRAM Memory 

Atmel 
SAMD21 

FFPID 
22 524 bytes 

(8.6%) 
2 680 bytes (8.2%) 

MPC 
Ts = 250 ms|p = 35|m = 3|1  

iteration|qin = 5 L/min 

53 836 bytes 
(20.5%) 

6 568 bytes 
(20.0%) 

Atmega2560 

FFPID 8 256 bytes (3.1%) 788 bytes (9.6%) 
MPC 

Ts = 250 ms|p = 30|m = 3|1  
iteration|qin = 8 L/min 

33 680 bytes 
(12.8%) 

7 766 bytes 
(94.8%) 

The temperature responses in cold start scenarios (Figure 8) reveal faster responses 
of the predictive control. Moreover, the predictive controller was also able to provide: 
lower or equal rise times (Table 5); lower se ling times, except for the minimum flow rate 
scenario (2.2 L/min); lower overshoot, except for 2.2 L/min and 3.65 L/min; and consistent 
lower ISE and higher comfort indexes (except for 2.2 L/min). Concerning the implemen-
tation in the 32-bit microcontroller, the highest comfort difference occurred in the average 
flow rate, which was approximately 24% higher for MPC. Moreover, a 15% higher comfort 
index was obtained for the 8-bit microcontroller (when 6.55 L/min is requested). 

 
Figure 8. Cold start HIL simulation results found for different flow rates using FFPID and MPC 
controllers implemented in: (a) Atmel SAMD21 microcontroller; and (b) Atmega2560 microcontrol-
ler. 

  

Figure 8. Cold start HIL simulation results found for different flow rates using FFPID and MPC
controllers implemented in: (a) Atmel SAMD21 microcontroller; and (b) Atmega2560 microcontroller.

Concerning the flow rate increasing scenario (Figure 9), the MPC controller reached
the desired temperature faster than the FFPID controller after disturbances. However,
the response improvements obtained with an 8-bit microcontroller are noticeable as the
flow rate increase occurred for the linearisation flow rate. Results obtained with the 32-
bit microcontroller highlight that, although the MPC controller achieved a settling time
3 s longer than the FFPID controller, it provided a 1% lower undershoot and a 4% higher
comfort index, as well as a significantly lower ISE, making it able to provide responses closer
to the desired temperatures 60 s after disturbances (Table 6). Regarding the implementation
in the 8-bit microcontroller, the settling time decreased by 12 s, which was lowered by
8 s compared to the FFPID. Additionally, the comfort index increased by 5% relative to
the one obtained for the 32-bit microcontroller, which is 9% higher than the technique
currently used. Significant lower ISE and slightly lower undershoots were achieved for
both controllers when the MPC controller was used.
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Table 5. Comparison of HIL simulation results found for cold start using the FFPID and MPC
controllers, implemented in the Atmel SAMD21 and Atmega2560 microcontrollers.

MCU q (L/min) Controller Rise Time
(s)

Settling
Time

(2.5%) (s)

Overshoot
(%) Max (◦C) ISE (◦C2/s) fcomfort (%)

A
tm

el
SA

M
D

21

2.2
FFPID 29.1 49.8 3.3 46.5 16,284 33.7
MPC 22.5 55.7 16.9 52.6 14,280 20.4

3.65
FFPID 18.5 35.1 5.4 47.4 10,723 40.3
MPC 14.7 30.6 8.6 48.9 9769 51.3

5.1
FFPID 14.2 27.9 7.3 48.3 8510 50.6
MPC 12.0 12.8 0.9 45.4 7861 74.4

6.55
FFPID 11.7 23.4 8.9 49.0 7151 59.2
MPC 11.5 23.6 5.1 47.3 7103 69.6

8
FFPID 11.5 21.5 4.8 47.2 6583 63.8
MPC 11.5 13.3 1.7 45.8 6590 76.0

A
t-

m
eg

a
25

60

2.2
FFPID 28.9 49.3 3.3 46.5 16,362 33.7
MPC 22.8 - 16.1 52.2 14,711 17.2

3.65
FFPID 18.7 35.3 5.3 47.4 11,023 40.3
MPC 16.4 31.3 8.5 48.8 9801 44.0

5.1
FFPID 14.3 27.8 7.0 48.2 8634 52.1
MPC 12.5 24.7 5.0 47.3 8180 56.9

6.55
FFPID 11.8 23.4 8.8 49.0 7341 57.5
MPC 11.6 12.9 2.4 46.1 7266 72.8

8
FFPID 11.8 21.5 4.2 46.9 6846 67.1
MPC 11.6 13.5 0.8 45.4 6660 75.9

Table 6. Comparison of HIL simulation results found for flow rate changes using FFPID and classic
MPC controllers, implemented in the Atmel SAMD21 and Atmega2560 microcontrollers.

Disturbance MCU Controller
Settling

Time (2.5%)
(s)

Undershoot/
Overshoot (%)

Min/Max
(◦C) ISE (◦C2/s) fcomfort (%)

Flow rate
increase

Atmel
SAMD21

FFPID 19.3 25.5 33.5 422 79.0
MPC 22.4 24.4 34.0 301 83.0

Atmega
2560

FFPID 19.0 25.5 33.5 425 79.0
MPC 10.7 24.5 34.0 305 88.0

Flow rate
decrease

Atmel
SAMD21

FFPID 37.4 31.8 59.3 1587 61.5
MPC 43.4 31.7 59.3 762 60.9

Atmega
2560

FFPID 36.7 31.4 59.1 1519 61.5
MPC 46.5 31.1 59.0 800 65.6

Concerning the flow rate decreasing scenario (Figure 9), a performance loss was
expected using the 8-bit microcontroller, as the flow rate change is performed at the
minimum flow rate, the opposite of the limit flow used in plant linearisation. The results
show a longer settling time using the predictive controller, about 6 s and 10 s for the
32-bit and 8-bit microcontrollers, respectively (Table 6). However, significantly lower
ISE and overshoots were observed using the MPC controller for both types of low-cost
hardware. The comfort index obtained in the 32-bit microcontroller was about 0.6% lower
using the MPC controller due to its oscillating characteristics. However, the predictive
controller presented a comfort index about 4.1% higher when implemented using the 8-bit
microcontroller.
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A graphical representation of the comfort the user would feel during HIL simulations
is presented in Figure 10. The comfort improvement using the MPC controller is noticeable
in most HIL simulations, mainly in the cold start scenarios. Using the overall comfort index
as the average of the considered events, a 55.4% comfort index for the FFPID controller and
62.2% for the MPC controller were obtained in the 32-bit microcontroller; concerning the
8-bit microcontroller, 55.9% for the FFPID controller and 60.1% for MPC controller were
observed. The implementation of the MPC algorithm on the lower-performance hardware
made it possible to provide higher user comfort.
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4. Conclusions

This work describes the development of predictive temperature control strategies:
(i) to reduce the temperature overshoot and undershoot effects of instantaneous water
heaters, which usually occur during significant flow rate changes; and (ii) to reduce the
rise time in cold start scenarios, such that the amount of wasted water can be reduced.
Their performance was analysed both in simulation and HIL environments, in which the
predictive controller was successfully embedded into two low-cost microcontrollers, such
that it can be incorporated into gas water heaters by manufacturers.

Temperature overshoots and undershoots were not completely eliminated, as the
water demand cannot be predicted, and the system is characterised by time delays. Even
so, MPC controllers (in particular the adaptive one) were able to provide faster responses to
disturbances and lower rise times in cold start scenarios, which result in lower water and
energy costs, lower environmental impacts (gaseous emissions) and increased user comfort,
as the duration of uncomfortable water exposure is minimised. The classic MPC controller’s
performance was dependent on the operating point chosen for plant linearisation, which
exhibits a superior performance. The use of successive linearisation at each instant (adaptive
MPC) allowed to overcome limitations occurring when operating points are far from the
chosen nominal operating point; significantly improved performances over the entire water
heater operating range can be obtained. For the lowest flow rate, the performance of MPC
was significantly inferior, which demonstrates the significant impact of model mismatch,
particularly with time delays, and the advantage of adaptive control.

Although the predictive control requires more computational and memory resources
than the FFPID control, the classic MPC controller was successfully embedded into two
low-cost microcontrollers, namely 8-bit and 32-bit platforms, using an automatic code-
generation tool. Similar conclusions were obtained using both a simulation environment
and the HIL simulation environment incorporating these microcontrollers: (1) the predictive
controller is able to reduce rise and settling times at cold starts, which can provide a
significant reduction of water consumption and energy costs, as well as a relevant increase
in the user comfort; (2) the predictive controller is able to provide shorter settling times
and higher comfort indexes for sudden changes in water flow rates.

TGWHs have a long service life, up to 20 years, and the degradation of actuators’
performance, along with water flow restriction due to calcium build-up, has a significant
impact on the appliance dynamics in the long term. One advantage of adaptive control
strategies is the self-adaptation to the deterioration of plant dynamics, which is not achieved
with fixed model-based control strategies, such as FFPID or classic MPC.

Future work should be conducted to assess the experimental performance and effec-
tiveness of the developed MPC controller using real water heaters. The proposed predictive
control strategy should be incorporated with other water heater control tasks, such as safety
features and the control loop for the air–gas mixture; this must be performed in partnership
with a TGWH manufacturer. These tests are relevant to analyse the impact of various plant
characteristics that can only be considered in a real scenario, such as the time between
disturbance events and the disturbance detection performance. Additionally, the adap-
tive MPC must be successfully embedded into low-cost microcontrollers, as it will most
likely provide higher performances than classical MPC controllers. Investigation of the
microcontroller requirements can help to define a more suitable hardware for the adaptive
embedded implementation. A study that evaluates and compares new advancements in
real-time solvers and code-generator tools built explicitly for embedded MPC should also
be carried out, considering the control of TGWH. The generic code-generation platform
produces excessive redundant code, and more specific and efficient tools must be employed
for an optimised implementation.



Machines 2023, 11, 951 17 of 20

Author Contributions: Investigation, methodology, software and writing—original draft, C.C. and
A.Q.; funding acquisition, conceptualisation, project administration, supervision and writing—review
and editing, J.A.F.F., N.M. and M.P.S.d.S. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the Portuguese Foundation for Science and Technology
(Projects UIDB/00481/2020 and UIDP/00481/2020) and CENTRO-01-0145 FEDER-022083-Centro
Regional Operational Program (Centro2020), through Portugal 2020 and the European Regional
Development Fund. The present study was developed under the scope of the Smart Green Homes
Project (POCI-01-0247 FEDER-007678). It was also supported by the Centre for Mechanical Technology
and Automation (TEMA) and Intelligent Systems Associate Laboratory (LASI).

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

aMPC Adaptive MPC
ECU Electronic control unit
FFPID Feedforward with feedback control
HIL Hardware-in-the-loop
ISE Integral squared error
MD Measured disturbance
MO Measured output
MPC Model predictive control
MV Manipulated variable
PID Proportional-integral-derivative
QP Quadratic programming
TGWH Tankless gas water heaters

Nomenclature

A State matrix
B Input matrix
c Specific heat
C Output matrix
C1 Auxiliar constant
D Feedthrough matrix
fcomfort Comfort index
J Cost function
L Length
.

Q Thermal power
.
q Volumetric flow rate
R Radius
T Temperature
t Time
u Input vector
x State vector
ρ Density
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