Influence of Preparation Characteristics on Stability, Properties, and Performance of Mono- and Hybrid Nanofluids: Current and Future Perspective
Abstract
:1. Introduction
2. NF Formulation, Characterization, and Stability
2.1. Formulation Techniques
2.2. Characterization Techniques
2.3. Stability Improvement and Tests
2.3.1. Stability of NFs
2.3.2. Stability Improvement Techniques
Sonication
Addition of Surfactants
Control of pH
Functionalization of Nanoparticles
2.3.3. Stability Test Methods
Visual Inspection
Zeta Potential
Ultraviolet-Visible Spectrophotometer
Checking of Thermophysical Properties
3. Influence of Preparation Characteristics on Stability, Properties, and Performance
3.1. Mono NFs
3.1.1. Thermal Properties
3.1.2. Zeta Potential
3.1.3. Absorbance
3.1.4. Surface Tension
3.1.5. pH
3.1.6. Aggregate Size, Sedimentation Time, and Velocity
3.1.7. Thermal Performance of Heat Transfer Devices
3.2. Hybrid NFs
3.2.1. Thermal, Optical, and Rheological Properties
3.2.2. Zeta Potential and Absorbance
3.2.3. Photothermal Conversion and Solar Collector Performance
3.2.4. Thermal and Hydraulic Performance of Heat Transfer Devices
4. Future Research Direction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
NP—nanoparticles | h, HTC—coefficient of heat transfer (W/m2 K) |
HNF—hybrid nanofluids | W—water |
HNP—hybrid nanoparticles | DIW—deionized water |
MNF—mono nanofluid | DW—distilled water |
TEM—transmission electron microscopy | EG—ethylene glycol |
SEM—scanning electron microscopy | Cp—specific heat (J/kgK) |
EDL—electrical double layer | ZP—zeta potential |
XRD—X-ray diffraction | IEP—isoelectric potential |
SHMP—sodium hexa meta phosphate | GL—glycerol |
THP—thermosyphon heat pipe | SDS—sodium dodecyl sulphate |
UV—ultraviolet | CTAB—cetyl trimethyl ammonium bromide |
Nu—Nusselt number | GA—gum Arabic |
ΔP—pressure drop | OA—oleic acid |
φ—volume concentration | SDBS—sodium dodecyl benzene sulfonate |
η—efficiency | TMAH—tetramethylammonium Hydroxide |
μ—viscosity (mPas) | CMC—critical micelle concentration |
κ—thermal conductivity (W/m K) | SDC—sodium deoxycholate |
θ—contact angle | PVA—polyvinyl alcohol |
σ—electrical conductivity (S/m) | PVP—polyvinyl pyrrolidone |
γ—yield stress | EBT—Eriochrome Black T |
References
- Sharifpur, M.; Adio, S.A.; Meyer, J.P. Experimental investigation and model development for effective μ of Al2O3-glycerol NFs by using dimensional analysis and GMDH-NN methods. Int. Commun. Heat Mass Transf. 2015, 68, 208–219. [Google Scholar] [CrossRef] [Green Version]
- Rostami, S.; Toghraie, D.; Shabani, B.; Sina, N.; Barnoon, P. Measurement of the κ of MWCNT-CuO/water hybrid NF using artificial neural networks (ANNs). J. Therm. Anal. Calorim. 2021, 143, 1097–1105. [Google Scholar] [CrossRef]
- Osman, S.; Sharifpur, M.; Meyer, J.P. Experimental investigation of convection heat transfer in the transition flow regime of aluminium oxide-water NFs in a rectangular channel. Int. J. Heat Mass Transf. 2019, 133, 895–902. [Google Scholar] [CrossRef] [Green Version]
- Giwa, S.O.; Sharifpur, M.; Ahmadi, M.H.; Sohel Murshed, S.M.; Meyer, J.P. Experimental investigation on stability, μ, and σ of water-based hybrid NF of mwcnt-Fe2O3. Nanomaterials 2021, 11, 136. [Google Scholar] [CrossRef]
- Nwaokocha, C.; Momin, M.; Giwa, S.; Sharifpur, M.; Murshed, S.M.S.; Meyer, J.P. Experimental investigation of thermo-convection behaviour of aqueous binary NFs of MgO-ZnO in a square cavity. Therm. Sci. Eng. Prog. 2022, 28, 101057. [Google Scholar] [CrossRef]
- Rostami, S.; Aghaei, A.; Hassani Joshaghani, A.; Mahdavi Hezaveh, H.; Sharifpur, M.; Meyer, J.P. Thermal–hydraulic efficiency management of spiral heat exchanger filled with Cu–ZnO/water hybrid NF. J. Therm. Anal. Calorim. 2021, 143, 1569–1582. [Google Scholar] [CrossRef]
- Giwa, S.O.; Sharifpur, M.; Meyer, J.P. Effects of uniform magnetic induction on heat transfer performance of aqueous hybrid ferrofluid in a rectangular cavity. Appl. Therm. Eng. 2020, 170, 115004. [Google Scholar] [CrossRef]
- Giwa, S.O.; Sharifpur, M.; Meyer, J.P. Experimental study of thermo-convection performance of hybrid NFs of Al2O3-MWCNT/water in a differentially heated square cavity. Int. J. Heat Mass Transf. 2020, 148, 119072. [Google Scholar] [CrossRef]
- Sharifpur, M.; Yousefi, S.; Meyer, J.P. A new model for density of NFs including nanolayer. Int. Commun. Heat Mass Transf. 2016, 78, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Ghodsinezhad, H.; Sharifpur, M.; Meyer, J.P. Experimental investigation on cavity flow natural convection of Al2O3–water NFs. Int. Commun. Heat Mass Transf. 2016, 76, 316–324. [Google Scholar] [CrossRef]
- Sharifpur, M.; Solomon, A.B.; Ottermann, T.L.; Meyer, J.P. Optimum concentration of NFs for heat transfer enhancement under cavity flow natural convection with TiO2– Water. Int. Commun. Heat Mass Transf. 2018, 98, 297–303. [Google Scholar] [CrossRef]
- Sundar, L.S.; Manoj, A.H.M.; António, K.S.; Hafiz, C.M.S.; Ali, M. Efficiency analysis of thermosyphon solar flat plate collector with low mass concentrations of ND–Co3O4 hybrid NFs: An experimental study. J. Therm. Anal. Calorim. 2021, 143, 959–972. [Google Scholar] [CrossRef]
- Sundar, L.S.; Singh, M.K.; Sousa, A.C.M. Turbulent heat transfer and friction factor of nanodiamond-nickel hybrid NFs flow in a tube: An experimental study. Int. J. Heat Mass Transf. 2018, 117, 223–234. [Google Scholar] [CrossRef]
- Al-Hossainy, A.F.; Eid, M.R. Combined theoretical and experimental DFT-TDDFT and thermal characteristics of 3-D flow in rotating tube of [PEG + H2O/SiO2-Fe3O4]C hybrid NF to enhancing oil extraction. Waves Random Complex Media 2021. [Google Scholar] [CrossRef]
- Al-Hossainy, A.F.; Eid, M.R. Combined experimental thin films, TDDFT-DFT theoretical method, and spin effect on [PEG-H2O/ZrO2+MgO]h hybrid NF flow with higher chemical rate. Surf. Interfaces 2021, 23, 100971. [Google Scholar] [CrossRef]
- Eid, M.R.; Al-Hossainy, A.F. High-performance NF synthesis and DFT-TDDFT study of grapheme nanosheets along bent surface for enhanced. Case Stud. Therm. Eng. 2021, 25, 100983. [Google Scholar] [CrossRef]
- Jamshed, W.; Eid, M.R.; Al-Hossainy, A.F.; Raizah, Z.; Tag El Din, E.S.M.; Sajid, T. Experimental and TDDFT materials simulation of thermal characteristics and entropy optimized of Williamson Cu-methanol and Al2O3-methanol NF flowing through solar collector. Sci. Rep. 2022, 12, 18130. [Google Scholar] [CrossRef]
- Garbadeen, I.D.; Sharifpur, M.; Slabber, J.M.; Meyer, J.P. Experimental study on natural convection of MWCNT-water NFs in a square enclosure. Int. Commun. Heat Mass Transf. 2017, 88, 1–8. [Google Scholar] [CrossRef]
- Solomon, A.B.; van Rooyen, J.; Rencken, M.; Sharifpur, M.; Meyer, J.P. Experimental study on the influence of the aspect ratio of square cavity on natural convection heat transfer with Al2O3/Water NFs. Int. Commun. Heat Mass Transf. 2017, 88, 254–261. [Google Scholar] [CrossRef]
- Joubert, J.C.; Sharifpur, M.; Solomon, A.B.; Meyer, J.P. Enhancement in heat transfer of a ferrofluid in a differentially heated square cavity through the use of permanent magnets. J. Magn. Magn. Mater. 2017, 443, 149–158. [Google Scholar] [CrossRef]
- Solomon, A.B.; Sharifpur, M.; Ottermann, T.; Grobler, C.; Joubert, M.; Meyer, J.P. Natural convection enhancement in a porous cavity with Al2O3-Ethylene glycol/water NFs. Int. J. Heat Mass Transf. 2017, 108, 1324–1334. [Google Scholar] [CrossRef] [Green Version]
- Giwa, S.O.; Sharifpur, M.; Meyer, J.P. Heat transfer enhancement of dilute Al2O3-MWCNT water based hybrid NFs in a square cavity. In Proceedings of the International Heat Transfer Conference, Beijing, China, 10–15 August 2018; Volume 2018, pp. 5365–5372. [Google Scholar] [CrossRef]
- Waini, I.; Ishak, A.; Groşan, T.; Pop, I. Mixed convection of a hybrid NF flow along a vertical surface embedded in a porous medium. Int. Commun. Heat Mass Transf. 2020, 114, 104565. [Google Scholar] [CrossRef]
- Alsabery, A.I.; Ismael, M.A.; Chamkha, A.J.; Hashim, I. Mixed convection of Al2O3 -water NF in a double lid-driven square cavity with a solid inner insert using Buongiorno’s two-phase model. Int. J. Heat Mass Transf. 2018, 119, 939–961. [Google Scholar] [CrossRef]
- Dalkılıç, A.S.; Türk, O.A.; Mercan, H.; Nakkaew, S.; Wongwises, S. An experimental investigation on heat transfer characteristics of graphite-SiO2/water hybrid NF flow in horizontal tube with various quad-channel twisted tape inserts. Int. Commun. Heat Mass Transf. 2019, 107, 1–13. [Google Scholar] [CrossRef]
- Syam Sundar, L.; Otero-Irurueta, G.; Singh, M.K.; Sousa, A.C.M. Heat transfer and friction factor of multi-walled carbon nanotubes-Fe3O4 nanocomposite NFs flow in a tube with/without longitudinal strip inserts. Int. J. Heat Mass Transf. 2016, 100, 691–703. [Google Scholar] [CrossRef]
- Kanti, P.K.; Sharma, K.V.; Minea, A.A.; Kesti, V. Experimental and computational determination of heat transfer, entropy generation and pressure drop under turbulent flow in a tube with fly ash-Cu hybrid NF. Int. J. Therm. Sci. 2021, 167, 107016. [Google Scholar] [CrossRef]
- Gul, T.; Firdous, K. The experimental study to examine the stable dispersion of the graphene nanoparticles and to look at the GO–H2O NF flow between two rotating disks. Appl. Nanosci. 2018, 8, 1711–1727. [Google Scholar] [CrossRef]
- Gul, T.; Khan, M.A.; Noman, W.; Khan, I. SS symmetry Fractional Order Forced Convection Carbon Nanotube NF Flow Passing over a Thin Needle. Symmetry 2019, 11, 312. [Google Scholar] [CrossRef] [Green Version]
- Sundar, L.S.; Mesfin, S.; Venkata Ramana, E.; Said, Z.; Sousa, A.C.M. Experimental investigation of thermo-physical properties, heat transfer, pumping power, entropy generation, and exergy efficiency of nanodiamond + Fe3O4/60, 40% water-ethylene glycol hybrid NF flow in a tube. Therm. Sci. Eng. Prog. 2021, 21, 100799. [Google Scholar] [CrossRef]
- Mubeen, I.; Shengyong, L.; Jianhua, Y.; Khan, M.S.; Yan, M.; Ali, H.M. Effect of milling material on characteristics and reactivity of mechanically treated fly ash to produce PCDD/F. J. Therm. Anal. Calorim. 2021, 143, 2707–2716. [Google Scholar] [CrossRef]
- Choudhary, S.; Sachdeva, A.; Kumar, P. Investigation of the stability of MgO NF and its effect on the thermal performance of flat plate solar collector. Renew. Energy 2020, 147, 1801–1814. [Google Scholar] [CrossRef]
- Okonkwo, E.C.; Wole-Osho, I.; Kavaz, D.; Abid, M.; Al-Ansari, T. Thermodynamic evaluation and optimization of a flat plate collector operating with alumina and iron mono and hybrid NFs. Sustain. Energy Technol. Assess. 2020, 37, 100636. [Google Scholar] [CrossRef]
- Gopalsamy, V.; Senthil, R.; Varatharajulu, M.; Karunakaran, R. Application of response surface methodology to predict the optimized input quantities of parabolic trough concentrator. Int. J. Renew. Energy Dev. 2020, 9, 393–400. [Google Scholar] [CrossRef]
- Efemwenkiekie, K.U.; Oyedepo, S.O.; Giwa, S.O.; Sharifpur, M.; Owoeye, T.F.; Akinlabu, K.D.; Meyer, J.P. Experimental investigation of heat transfer performance of novel bio-extract doped mono and hybrid NFs in a radiator. Case Stud. Therm. Eng. 2021, 28, 101494. [Google Scholar] [CrossRef]
- Khan, A.; Ali, H.M.; Nazir, R.; Ali, R.; Munir, A.; Ahmad, B.; Ahmad, Z. Experimental investigation of enhanced heat transfer of a car radiator using ZnO nanoparticles in H2O–ethylene glycol mixture. J. Therm. Anal. Calorim. 2019, 138, 3007–3021. [Google Scholar] [CrossRef]
- Lou, J.F.; Zhang, H.; Wang, R. Experimental investigation of graphite nanolubricant used in a domestic refrigerator. Adv. Mech. Eng. 2015, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.J.; Chen, W.C.; Yan, W.M.; Amani, P. Contribution of hybrid Al2O3-water NF and PCM suspension to augment thermal performance of coolant in a minichannel heat sink. Int. J. Heat Mass Transf. 2018, 122, 651–659. [Google Scholar] [CrossRef]
- Jamil, M.; Khan, A.M.; Hegab, H.; Gong, L.; Mia, M.; Gupta, M.K. Effects of hybrid Al2O3-CNT NFs and cryogenic cooling on machining of Ti–6Al–4V. Int. J. Adv. Manuf. Technol. 2019, 102, 3895–3909. [Google Scholar] [CrossRef]
- Hussien, A.A.; Abdullah, M.Z.; Yusop, N.M.; Al-Nimr, M.A.; Atieh, M.A.; Mehrali, M. Experiment on forced convective heat transfer enhancement using MWCNTs/GNPs hybrid NF and mini-tube. Int. J. Heat Mass Transf. 2017, 115, 1121–1131. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, L.; Feng, J.; Qiao, L.; Yu, C.; Shi, W.; Ding, C.; Zang, Y.; Chang, C.; Xiong, Y.; et al. A comparative investigation on the effect of different NFs on the thermal performance of two-phase closed thermosyphon. Int. J. Heat Mass Transf. 2020, 149, 119189. [Google Scholar] [CrossRef]
- Ahmed, F.; Iqbal, M. Heat Transfer Analysis of MHD Power Law Nano Fluid Flow through Annular Sector Duct. J. Therm. Sci. 2020, 29, 169–181. [Google Scholar] [CrossRef]
- Singh, S.K.; Sarkar, J. Experimental hydrothermal characteristics of concentric tube heat exchanger with V-cut twisted tape turbulator using PCM dispersed mono/hybrid NFs. Exp. Heat Transf. 2021, 34, 421–442. [Google Scholar] [CrossRef]
- Guo, J.; Barber, G.C.; Schall, D.J.; Zou, Q.; Jacob, S.B. Tribological properties of ZnO and WS2 NFs using different surfactants. Wear 2017, 382–383, 8–14. [Google Scholar] [CrossRef]
- Gao, T.; Li, C.; Zhang, Y.; Yang, M.; Jia, D.; Jin, T.; Hou, Y.; Li, R. Dispersing mechanism and tribological performance of vegetable oil-based CNT NFs with different surfactants. Tribol. Int. 2019, 131, 51–63. [Google Scholar] [CrossRef]
- He, J.; Sun, J.; Meng, Y.; Pei, Y. Superior lubrication performance of MoS2-Al2O3 composite NF in strips hot rolling. J. Manuf. Process. 2020, 57, 312–323. [Google Scholar] [CrossRef]
- Gugulothu, S.; Pasam, V.K. Experimental investigation to study the performance of CNT/MoS2 hybrid NF in turning of AISI 1040 steel. Aust. J. Mech. Eng. 2020, 20, 814–824. [Google Scholar] [CrossRef]
- Ali, M.K.A.; Xianjun, H.; Mai, L.; Qingping, C.; Turkson, R.F.; Bicheng, C. Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives. Tribol. Int. 2016, 103, 540–554. [Google Scholar] [CrossRef]
- Nam, J.S.; Lee, P.H.; Lee, S.W. Experimental characterization of micro-drilling process using NF minimum quantity lubrication. Int. J. Mach. Tools Manuf. 2011, 51, 649–652. [Google Scholar] [CrossRef]
- Ali, M.K.A.; Hou, X.; Abdelkareem, M.A.A. Anti-wear properties evaluation of frictional sliding interfaces in automobile engines lubricated by copper/graphene nanolubricants. Friction 2020, 8, 905–916. [Google Scholar] [CrossRef]
- Ali, M.K.A.; Xianjun, H. Improving the heat transfer capability and thermal stability of vehicle engine oils using Al2O3/TiO2 nanomaterials. Powder Technol. 2020, 363, 48–58. [Google Scholar] [CrossRef]
- Kiani, M.; Ansari, M.; Arshadi, A.A.; Houshfar, E.; Ashjaee, M. Hybrid thermal management of lithium-ion batteries using NF, metal foam, and phase change material: An integrated numerical–experimental approach. J. Therm. Anal. Calorim. 2020, 141, 1703–1715. [Google Scholar] [CrossRef]
- Navarrete, N.; Mondragón, R.; Wen, D.; Navarro, M.E.; Ding, Y.; Juliá, J.E. Thermal energy storage of molten salt –based NF containing nano-encapsulated metal alloy phase change materials. Energy 2019, 167, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Sharma, H.K.; Verma, S.K.; Singh, P.K.; Kumar, S.; Paswan, M.K.; Singhal, P. Performance analysis of paraffin wax as PCM by using hybrid zinc-cobalt-iron oxide nano-fluid on latent heat energy storage system. Mater. Today Proc. 2019, 26, 1461–1464. [Google Scholar] [CrossRef]
- Zaibudeen, A.W.; Philip, J. Temperature and pH sensor based on functionalized magnetic NF. Sens. Actuators B Chem. 2018, 268, 338–349. [Google Scholar] [CrossRef]
- Soares, M.C.P.; Rodrigues, M.S.; Schenkel, E.A.; Perli, G.; Silva, W.H.A.; Gomes, M.K.; Fujiwara, E.; Suzuki, C.K. Evaluation of silica NFs in static and dynamic conditions by an optical fiber sensor. Sensors 2020, 20, 707. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, S.M.; Rafique, S.; Hamdan, K.S.; Roslan, N.A.; Li, L.; Sulaiman, K. Highly sensitive capacitive cell based on a novel CuTsPc-TiO2 nanocomposite electrolytic solution for low-temperature sensing applications. Sens. Actuators A Phys. 2019, 289, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Esmaeilzadeh, F.; Teja, A.S.; Bakhtyari, A. The κ, μ, and cloud points of bentonite NFs with n-pentadecane as the base fluid. J. Mol. Liq. 2020, 300, 112307. [Google Scholar] [CrossRef]
- Salehnezhad, L.; Heydari, A.; Fattahi, M. Experimental investigation and rheological behaviors of water-based drilling mud contained starch-ZnO NFs through response surface methodology. J. Mol. Liq. 2019, 276, 417–430. [Google Scholar] [CrossRef]
- Alnarabiji, M.S.; Yahya, N.; Nadeem, S.; Adil, M.; Baig, M.K.; Ben Ghanem, O.; Azizi, K.; Ahmed, S.; Maulianda, B.; Klemeš, J.J.; et al. NF enhanced oil recovery using induced ZnO nanocrystals by electromagnetic energy: Μ increment. Fuel 2018, 233, 632–643. [Google Scholar] [CrossRef]
- Li, R.; Jiang, P.; Gao, C.; Huang, F.; Xu, R.; Chen, X. Experimental investigation of silica-based NF enhanced oil recovery: The effect of wettability alteration. Energy Fuels 2017, 31, 188–197. [Google Scholar] [CrossRef]
- AfzaliTabar, M.; Rashidi, A.; Alaei, M.; Koolivand, H.; Pourhashem, S.; Askari, S. Hybrid of quantum dots for interfacial tension reduction and reservoir alteration wettability for enhanced oil recovery (EOR). J. Mol. Liq. 2020, 307, 112984. [Google Scholar] [CrossRef]
- Shao, X.-F.; Mo, S.-P.; Chen, Y.; Yin, T.; Yang, Z.; Jia, L.-S.; Cheng, Z.-D. Solidification behavior of hybrid TiO2 NFs containing nanotubes and nanoplatelets for cold thermal energy storage. Appl. Therm. Eng. 2017, 117, 427–436. [Google Scholar] [CrossRef]
- Joseph, A.; Sreekumar, S.; Kumar, C.S.S.; Thomas, S. Optimisation of thermo-optical properties of SiO2/Ag–CuO NF for direct absorption solar collectors. J. Mol. Liq. 2019, 296, 111986. [Google Scholar] [CrossRef]
- Hormozi, F.; ZareNezhad, B.; Allahyar, H.R. An experimental investigation on the effects of surfactants on the thermal performance of hybrid NFs in helical coil heat exchangers. Int. Commun. Heat Mass Transf. 2016, 78, 271–276. [Google Scholar] [CrossRef]
- Giwa, S.O.; Sharifpur, M.; Meyer, J.P. Experimental investigation into heat transfer performance of water-based magnetic hybrid NFs in a rectangular cavity exposed to magnetic excitation. Int. Commun. Heat Mass Transf. 2020, 116, 104698. [Google Scholar] [CrossRef]
- Khooshechin, M.; Fathi, S.; Salimi, F.; Ovaysi, S. The influence of surfactant and ultrasonic processing on improvement of stability and heat transfer coefficient of CuO nanoparticles in the pool boiling. Int. J. Heat Mass Transf. 2020, 154, 119783. [Google Scholar] [CrossRef]
- Gulzar, O.; Qayoum, A.; Gupta, R. Photo-thermal characteristics of hybrid NFs based on Therminol-55 oil for concentrating solar collectors. Appl. Nanosci. 2019, 9, 1133–1143. [Google Scholar] [CrossRef]
- Cacua, K.; Buitrago-Sierra, R.; Herrera, B.; Pabón, E.; Murshed, S.M. NFs’ stability effects on the thermal performance of heat pipes: A critical review. J. Therm. Anal. Calorim. 2019, 136, 1597–1614. [Google Scholar] [CrossRef]
- Koçak Soylu, S.; Atmaca, İ.; Asiltürk, M.; Doğan, A. Improving heat transfer performance of an automobile radiator using Cu and Ag doped TiO2 based NFs. Appl. Therm. Eng. 2019, 157, 113743. [Google Scholar] [CrossRef]
- Ghafurian, M.M.; Akbari, Z.; Niazmand, H.; Mehrkhah, R.; Wongwises, S.; Mahian, O. Effect of sonication time on the evaporation rate of seawater containing a nanocomposite. Ultrason. Sonochem. 2020, 61, 104817. [Google Scholar] [CrossRef]
- Abbasi, S.M.; Rashidi, A.; Nemati, A.; Arzani, K. The effect of functionalisation method on the stability and the κ of NF hybrids of carbon nanotubes/gamma alumina. Ceram. Int. 2013, 39, 3885–3891. [Google Scholar] [CrossRef]
- Zawrah, M.F.; Khattab, R.M.; Girgis, L.G.; El Daidamony, H.; Abdel Aziz, R.E. Stability and σ of water-base Al2O3 NFs for different applications. HBRC J. 2016, 12, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Adio, S.A.; Sharifpur, M.; Meyer, J.P. Influence of ultrasonication energy on the dispersion consistency of Al2O3–glycerol NF based on μ data, and model development for the required ultrasonication energy density. J. Exp. Nanosci. 2016, 11, 630–649. [Google Scholar] [CrossRef] [Green Version]
- Giwa, S.O.; Sharifpur, M.; Goodarzi, M.; Alsulami, H.; Meyer, J.P. Influence of base fluid, temperature, and concentration on the thermophysical properties of hybrid NFs of alumina–ferrofluid: Experimental data, modeling through enhanced ANN, ANFIS, and curve fitting. J. Therm. Anal. Calorim. 2021, 143, 4149–4167. [Google Scholar] [CrossRef]
- Giwa, S.O.; Sharifpur, M.; Meyer, J.P.; Wongwises, S.; Mahian, O. Experimental measurement of μ and σ of water-based γ-Al2O3/MWCNT hybrid NFs with various particle mass ratios. J. Therm. Anal. Calorim. 2021, 143, 1037–1050. [Google Scholar] [CrossRef]
- Giwa, S.O.; Momin, M.; Nwaokocha, C.N.; Sharifpur, M.; Meyer, J.P. Influence of nanoparticles size, per cent mass ratio, and temperature on the thermal properties of water-based MgO–ZnO NF: An experimental approach. J. Therm. Anal. Calorim. 2021, 143, 1063–1079. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Esmaeilzadeh, F.; Wang, X.P. Effects of temperature and particles volume concentration on the thermophysical properties and the rheological behavior of CuO/MgO/TiO2 aqueous ternary hybrid NF: Experimental investigation. J. Therm. Anal. Calorim. 2019, 137, 879–901. [Google Scholar] [CrossRef]
- Aparna, Z.; Michael, M.; Pabi, S.K.; Ghosh, S. Κ of aqueous Al2O3/Ag hybrid nano fluid at different temperatures and volume concentrations: An experimental investigation and development of new correlation function. Powder Technol. 2019, 343, 714–722. [Google Scholar] [CrossRef]
- Vicki, W.V.; Abdullah, M.Z.; Gunnasegaran, P. Thermophysical properties of Al2O3-CuO hybrid NF at different nanoparticle mixture ratio: An experimetal approach. J. Mol. Liq. 2020, 1862, 183135. [Google Scholar] [CrossRef]
- Xian, H.W.; Sidik, N.A.C.; Saidur, R. Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid NFs. Int. Commun. Heat Mass Transf. 2020, 110, 104389. [Google Scholar] [CrossRef]
- Nabil, M.F.; Azmi, W.H.; Hamid, K.A.; Mamat, R. Experimental investigation of heat transfer and friction factor of TiO2-SiO2 NFs in water:ethylene glycol mixture. Int. J. Heat Mass Transf. 2018, 124, 1361–1369. [Google Scholar] [CrossRef]
- Michael, M.; Zagabathuni, A.; Sikdar, S.; Pabi, S.K.; Ghosh, S. Effect of dispersion behavior on the heat transfer characteristics of alumina NF: An experimental investigation and development of a new correlation function. Int. Nano Lett. 2020, 10, 207–217. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Esmaeilzadeh, F.; Wang, X.P. A detailed investigation on the thermo-physical and rheological behavior of MgO/TiO2 aqueous dual hybrid NF. J. Mol. Liq. 2019, 282, 323–339. [Google Scholar] [CrossRef]
- Menbari, A.; Alemrajabi, A.A.; Ghayeb, Y. Investigation on the stability, μ and extinction coefficient of CuO-Al2O3/Water binary mixture NF. Exp. Therm. Fluid Sci. 2016, 74, 122–129. [Google Scholar] [CrossRef]
- Kamalgharibi, M.; Hormozi, F.; Zamzamian, S.A.H.; Sarafraz, M.M. Experimental studies on the stability of CuO nanoparticles dispersed in different base fluids: Influence of stirring, sonication and surface active agents. Heat Mass Transf. Und. Stoffuebertragung. 2016, 52, 55–62. [Google Scholar] [CrossRef]
- Abadeh, A.; Passandideh-Fard, M.; Maghrebi, M.J.; Mohammadi, M. Stability and magnetization of Fe3O4/water NF preparation characteristics using Taguchi method. J. Therm. Anal. Calorim. 2019, 135, 1323–1334. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Pandya, N.S.; Said, Z.; Öztop, H.F.; Abu-Hamdeh, N. 4S consideration (synthesis, sonication, surfactant, stability) for the κ of CeO2 with MWCNT and water based hybrid NF: An experimental assessment. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125918. [Google Scholar] [CrossRef]
- Suhaimi, N.S.; Din, M.F.M.; Ishak, M.T.; Rahman, A.R.A.; Wang, J.; Hassan, M.Z. Performance and limitation of mineral oil-based carbon nanotubes NF in transformer application. Alex. Eng. J. 2022, 61, 9623–9635. [Google Scholar] [CrossRef]
- Sharifpur, M.; Ghodsinezhad, H.; Meyer, J.P.; Rolfes, H. Investigation on Ultrasonicaton Energy Density Effect on Characterization of Zinc Oxide (ZnO) NanoParticle Size Distribution with Using Zeta-Sizer. In Proceedings of the 11th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Conference Centre in the Skukuza Rest Camp, Kruger National Park, South Africa, 20–23 July 2015; pp. 211–216. [Google Scholar]
- Tiwari, A.K.; Pandya, N.S.; Said, Z.; Chhatbar, S.H.; Al-Turki, Y.A.; Patel, A.R. 3S (Sonication, surfactant, stability) impact on the μ of hybrid NF with different base fluids: An experimental study. J. Mol. Liq. 2021, 329, 115455. [Google Scholar] [CrossRef]
- Sajid, M.U.; Ali, H.M. Κ of hybrid NFs: A critical review. Int. J. Heat Mass Transf. 2018, 126, 211–234. [Google Scholar] [CrossRef]
- Gupta, M.; Singh, V.; Kumar, S.; Kumar, S.; Dilbaghi, N.; Said, Z. Up to date review on the synthesis and thermophysical properties of hybrid NFs. J. Clean. Prod. 2018, 190, 169–192. [Google Scholar] [CrossRef]
- Nabil, M.F.; Azmi, W.H.; Abdul Hamid, K.; Mamat, R.; Hagos, F.Y. An experimental study on the κ and dynamic μ of TiO2-SiO2 NFs in water: Ethylene glycol mixture. Int. Commun. Heat Mass Transf. 2017, 86, 181–189. [Google Scholar] [CrossRef]
- Ranga Babu, J.A.; Kumar, K.K.; Srinivasa Rao, S. State-of-art review on hybrid NFs. Renew. Sustain. Energy Rev. 2017, 77, 551–565. [Google Scholar] [CrossRef]
- Kumar, D.D.; Arasu, A.V. A comprehensive review of preparation, characterization, properties and stability of hybrid NFs. Renew. Sustain. Energy Rev. 2018, 81, 1669–1689. [Google Scholar] [CrossRef]
- Sundar, L.S.; Venkata Ramana, E.; Graça, M.P.F.; Singh, M.K.; Sousa, A.C.M. Nanodiamond-Fe3O4 NFs: Preparation and measurement of μ, electrical and thermal conductivities. Int. Commun. Heat Mass Transf. 2016, 73, 62–74. [Google Scholar] [CrossRef]
- Adio, S.A.; Mehrabi, M.; Sharifpur, M.; Meyer, J.P. Experimental investigation and model development for effective μ of MgO-ethylene glycol NFs by using dimensional analysis, FCM-ANFIS and GA-PNN techniques. Int. Commun. Heat Mass Transf. 2016, 72, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Kakavandi, A.; Akbari, M. Experimental investigation of κ of NFs containing of hybrid nanoparticles suspended in binary base fluids and propose a new correlation. Int. J. Heat Mass Transf. 2018, 124, 742–751. [Google Scholar] [CrossRef]
- Sundar, L.S.; Shusmitha, K.; Singh, M.K.; Sousa, A.C.M. Σ enhancement of nanodiamond-nickel (ND-Ni) nanocomposite based magnetic NFs. Int. Commun. Heat Mass Transf. 2014, 57, 1–7. [Google Scholar] [CrossRef]
- Askari, S.; Koolivand, H.; Pourkhalil, M.; Lotfi, R.; Rashidi, A. Investigation of Fe3O4/Graphene nanohybrid heat transfer properties: Experimental approach. Int. Commun. Heat Mass Transf. 2017, 87, 30–39. [Google Scholar] [CrossRef]
- Nabati Shoghl, S.; Jamali, J.; Keshavarz Moraveji, M. Σ, μ, and density of different NFs: An experimental study. Exp. Therm. Fluid Sci. 2016, 74, 339–346. [Google Scholar] [CrossRef]
- Said, Z. Thermophysical and optical properties of SWCNTs NFs. Int. Commun. Heat Mass Transf. 2016, 78, 207–213. [Google Scholar] [CrossRef]
- Alirezaie, A.; Saedodin, S.; Esfe, M.H.; Rostamian, S.H. Investigation of rheological behavior of MWCNT (COOH-functionalized)/MgO-Engine oil hybrid NFs and modelling the results with artificial neural networks. J. Mol. Liq. 2017, 241, 173–181. [Google Scholar] [CrossRef]
- Kole, M.; Dey, T.K. Effect of aggregation on the μ of copper oxide-gear oil NFs. Int. J. Therm. Sci. 2011, 50, 1741–1747. [Google Scholar] [CrossRef]
- Wang, X.-J.; Zhu, D.-S.; Yang, S. Investigation of pH and SDBS on enhancement of κ in NFs. Chem. Phys. Lett. 2009, 470, 107–111. [Google Scholar] [CrossRef]
- Yang, J.-C.; Li, F.-C.; Zhou, W.-W.; He, Y.-R.; Jiang, B.-C. Experimental investigation on the κ and shear μ of viscoelastic-fluid-based NFs. Int. J. Heat Mass Transf. 2012, 55, 3160–3166. [Google Scholar] [CrossRef]
- Pastoriza-Gallego, M.J.; Lugo, L.; Legido, J.L.; Pineiro, M.M. Enhancement of κ and volumetric behavior of FexOy NFs. J. Appl. Phys. 2011, 110, 1–9. [Google Scholar] [CrossRef]
- Ramadhan, A.I.; Azmi, W.H.; Mamat, R.; Hamid, K.A.; Norsakinah, S. Investigation on stability of tri-hybrid NFs in water-ethylene glycol mixture Investigation on stability of tri -hybrid NFs in water- ethylene glycol mixture. IOP Conf. Ser. Mater. Sci. Eng. 2019, 469, 012068. [Google Scholar] [CrossRef]
- Midhun Mohan, V.; Sajeeb, A.M. Improving the Efficiency of DASC by Adding CeO2/CuO Hybrid Nanoparticles in Water. Int. J. Nanosci. 2018, 17, 1–8. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Saghravani, S.F. Influence of magnetic field on the κ of the water based mixed Fe3O4/CuO NF. J. Magn. Magn. Mater. 2017, 441, 366–373. [Google Scholar] [CrossRef]
- Ghadimi, A.; Saidur, R.; Metselaar, H.S.C. A review of NF stability properties and characterization in stationary conditions. Int. J. Heat Mass Transf. 2011, 54, 4051–4068. [Google Scholar] [CrossRef]
- Chen, L.F.; Cheng, M.; Yang, D.J.; Yang, L. Enhanced Κ of NF by Synergistic Effect of Multi-Walled Carbon Nanotubes and Fe2O3 Nanoparticles. Appl. Mech. Mater. 2014, 548–549, 118–123. [Google Scholar] [CrossRef]
- Naddaf, A.; Zeinali Heris, S. Experimental study on κ and σ of diesel oil-based NFs of graphene nanoplatelets and carbon nanotubes. Int. Commun. Heat Mass Transf. 2018, 95, 116–122. [Google Scholar] [CrossRef]
- Hemmat Esfe, M.; Abbasian Arani, A.A.; Rezaie, M.; Yan, W.M.; Karimipour, A. Experimental determination of κ and dynamic μ of Ag-MgO/water hybrid NF. Int. Commun. Heat Mass Transf. 2015, 66, 189–195. [Google Scholar] [CrossRef]
- Chen, L.; Yu, W.; Xie, H. Enhanced κ of NFs containing Ag/MWNT composites. Powder Technol. 2012, 231, 18–20. [Google Scholar] [CrossRef]
- Hajiyan, M.; Ebadi, S.; Mahmud, S.; Biglarbegian, M.; Abdullah, H. Experimental investigation of the effect of an external magnetic field on the κ and μ of Fe3O4–glycerol. J. Therm. Anal. Calorim. 2018, 1, 1–14. [Google Scholar] [CrossRef]
- Esmaeili, E.; Ghazanfar Chaydareh, R.; Rounaghi, S.A. The influence of the alternating magnetic field on the convective heat transfer properties of Fe3O4-containing NFs through the Neel and Brownian mechanisms. Appl. Therm. Eng. 2017, 110, 1212–1219. [Google Scholar] [CrossRef] [Green Version]
- Adio, S.A.; Sharifpur, M.; Meyer, J.P. Investigation Into Effective Μ, Σ, and pH of γ-Al2O3-Glycerol NFs in Einstein Concentration Regime. Heat Transf. Eng. 2015, 36, 1241–1251. [Google Scholar] [CrossRef] [Green Version]
- Adio, S.A.; Sharifpur, M.; Meyer, J.P. Factors affecting the pH and σ of MgO-ethylene glycol NFs. Bull. Mater. Sci. 2015, 38, 1345–1357. [Google Scholar] [CrossRef]
- Suresh, S.; Venkitaraj, K.P.; Selvakumar, P.; Chandrasekar, M. Synthesis of Al2O3-Cu/water hybrid NFs using two step method and its thermo physical properties. Colloids Surf. A Physicochem. Eng. Asp. 2011, 388, 41–48. [Google Scholar] [CrossRef]
- Kumar, V.; Sarkar, J. Numerical and experimental investigations on heat transfer and pressure drop characteristics of Al2O3-TiO2 hybrid NF in minichannel heat sink with different mixture ratio. Powder Technol. 2019, 345, 717–727. [Google Scholar] [CrossRef]
- Mahbubul, I.M.; Elcioglu, E.B.; Amalina, M.A.; Saidur, R. Stability, thermophysical properties and performance assessment of alumina–water NF with emphasis on ultrasonication and storage period. Powder Technol. 2019, 345, 668–675. [Google Scholar] [CrossRef]
- Mahbubul, I.M.; Elcioglu, E.B.; Saidur, R.; Amalina, M.A. Optimization of ultrasonication period for better dispersion and stability of TiO2–water NF. Ultrason. Sonochem. 2017, 37, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Sreekumar, S.; Joseph, A.; Sujith Kumar, C.S.; Thomas, S. Investigation on influence of antimony tin oxide/silver NF on direct absorption parabolic solar collector. J. Clean. Prod. 2020, 249, 119378. [Google Scholar] [CrossRef]
- Cacua, K.; Ordoñez, F.; Zapata, C.; Herrera, B.; Pabón, E.; Buitrago-Sierra, R. Surfactant concentration and pH effects on the zeta potential values of alumina NFs to inspect stability. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123960. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mukherjee, J.; Manna, M.; Ghosh, P.; Das, S.; Denys, M.B. Effect of Ag nanoparticle addition and ultrasonic treatment on a stable TiO2 NF. Ultrason. Sonochem. 2012, 19, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sarkar, J. Experimental hydrothermal characteristics of minichannel heat sink using various types of hybrid NFs. Adv. Powder Technol. 2020, 31, 621–631. [Google Scholar] [CrossRef]
- Xian-Ju, W.; Xin-Fang, L. Influence of pH on NFs’ Μ and Κ. Chin. Phys. Lett. 2009, 26, 056601. [Google Scholar] [CrossRef]
- Momin, G.G. Experimental Investigation of Mixed Convection With Water-Al2O3 & Hybrid NF In Inclined Tube For Laminar Flow. Int. J. Sci. Technol. Res. 2013, 2, 195–202. [Google Scholar]
- Akilu, S.; Baheta, A.T.; Mior, M.A.; Minea, A.A.; Sharma, K.V. Properties of glycerol and ethylene glycol mixture based SiO2-CuO/C hybrid NF for enhanced solar energy transport. Sol. Energy Mater. Sol. Cells 2018, 179, 118–128. [Google Scholar] [CrossRef]
- Qing, S.H.; Rashmi, W.; Khalid, M.; Gupta, T.C.S.M.; Nabipoor, M.; Hajibeigy, M.T. Κ and electrical properties of hybrid SiO2-graphene naphthenic mineral oil NF as potential transformer oil. Mater. Res. Express 2017, 4, 015504. [Google Scholar] [CrossRef]
- Okonkwo, E.C.; Wole-Osho, I.; Kavaz, D.; Abid, M. Comparison of experimental and theoretical methods of obtaining the thermal properties of alumina/iron mono and hybrid NFs. J. Mol. Liq. 2019, 292, 111377. [Google Scholar] [CrossRef]
- Menbari, A.; Alemrajabi, A.A.; Ghayeb, Y. Experimental investigation of stability and extinction coefficient of Al2O3-CuO binary nanoparticles dispersed in ethylene glycol-water mixture for low-temperature direct absorption solar collectors. Energy Convers. Manag. 2016, 108, 501–510. [Google Scholar] [CrossRef]
- Menbari, A.; Alemrajabi, A.A.; Rezaei, A. Experimental investigation of thermal performance for direct absorption solar parabolic trough collector (DASPTC) based on binary NFs. Exp. Therm. Fluid Sci. 2017, 80, 218–227. [Google Scholar] [CrossRef]
- Baby, T.T.; Ramaprabhu, S. Experimental investigation of the thermal transport properties of a carbon nanohybrid dispersed NF. Nanoscale 2011, 3, 2208. [Google Scholar] [CrossRef] [PubMed]
- Zawawi, N.N.M.; Azmi, W.H.; Redhwan, A.A.M.; Sharif, M.Z.; Samykano, M. Experimental investigation on thermo-physical properties of metal oxide composite nanolubricants. Int. J. Refrig. 2018, 89, 11–21. [Google Scholar] [CrossRef]
- Ganguly, S.; Sikdar, S.; Basu, S. Experimental investigation of the effective σ of aluminum oxide NFs. Powder Technol. 2009, 196, 326–330. [Google Scholar] [CrossRef]
- Ijam, A.; Saidur, R.; Ganesan, P.; Moradi Golsheikh, A. Stability, thermo-physical properties, and σ of graphene oxide-deionized water/ethylene glycol based NF. Int. J. Heat Mass Transf. 2015, 87, 92–103. [Google Scholar] [CrossRef]
- Sun, B.; Peng, C.; Zuo, R.; Yang, D.; Li, H. Investigation on the flow and convective heat transfer characteristics of NFs in the plate heat exchanger. Exp. Therm. Fluid Sci. 2016, 76, 75–86. [Google Scholar] [CrossRef]
- Hadadian, M.; Goharshadi, E.K.; Youssefi, A. Σ, κ, and rheological properties of graphene oxide-based NFs. J. Nanoparticle Res. 2014, 16, 1–17. [Google Scholar] [CrossRef]
- Yu, W.; Xie, H.; Chen, L.; Li, Y. Enhancement of κ of kerosene-based Fe3O4 NFs prepared via phase-transfer method. Colloids Surf. A Physicochem. Eng. Asp. 2010, 355, 109–113. [Google Scholar] [CrossRef]
- Mahrood, M.R.K.; Etemad, S.G.; Bagheri, R. Free convection heat transfer of non Newtonian NFs under constant heat flux condition. Int. Commun. Heat Mass Transf. 2011, 38, 1449–1454. [Google Scholar] [CrossRef]
- Arani, A.A.A.; Pourmoghadam, F. Experimental investigation of κ behavior of MWCNTS-Al2O3/ethylene glycol hybrid NF: Providing new κ correlation. Heat Mass Transf. Und. Stoffuebertragung. 2019, 55, 2329–2339. [Google Scholar] [CrossRef]
- Babu, S.R.; Rao, G.S. Experimental investigation of natural convective heat transfer using water-alumina NF with taguchi design of experiments. Int. J. Mech. Eng. Technol. 2017, 8, 795–804. [Google Scholar]
- Shahsavar, A.; Salimpour, M.R.; Saghafian, M.; Shafii, M.B. An experimental study on the effect of ultrasonication on κ of ferrofluid loaded with carbon nanotubes. Thermochim. Acta 2015, 617, 102–110. [Google Scholar] [CrossRef]
- Afzal, A.; Khan, S.A.; Ahamed Saleel, C. Role of ultrasonication duration and surfactant on characteristics of ZnO and CuO NFs. Mater. Res. Express 2019, 6, 1150d8. [Google Scholar] [CrossRef]
- Asadi, A.; Alarifi, I.M.; Ali, V.; Nguyen, H.M. An experimental investigation on the effects of ultrasonication time on stability and κ of MWCNT-water NF: Finding the optimum ultrasonication time. Ultrason. Sonochem. 2019, 58, 104639. [Google Scholar] [CrossRef]
- Asadi, A.; Alarifi, I.M. Effects of ultrasonication time on stability, dynamic μ, and pumping power management of MWCNT-water NF: An experimental study. Sci. Rep. 2020, 10, 15182. [Google Scholar] [CrossRef]
- Mahbubul, I.M.; Shahrul, I.M.; Khaleduzzaman, S.S.; Saidur, R.; Amalina, M.A.; Turgut, A. Experimental investigation on effect of ultrasonication duration on colloidal dispersion and thermophysical properties of alumina-water NF. Int. J. Heat Mass Transf. 2015, 88, 73–81. [Google Scholar] [CrossRef]
- Asadi, A.; Asadi, M.; Siahmargoi, M.; Asadi, T.; Gholami Andarati, M. The effect of surfactant and sonication time on the stability and κ of water-based NF containing Mg(OH)2 nanoparticles: An experimental investigation. Int. J. Heat Mass Transf. 2017, 108, 191–198. [Google Scholar] [CrossRef]
- Seong, H.; Kim, G.; Jeon, J.; Jeong, H.; Noh, J.; Kim, Y.; Kim, H.; Huh, S. Experimental study on characteristics of grinded graphene NFs with surfactants. Materials 2018, 11, 950. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Afrand, M.; Kalbasi, R.; Ali, H.M.; Heidarshenas, B.; Rostami, S. The effect of tungsten trioxide nanoparticles on the κ of ethylene glycol under different sonication durations: An experimental examination. Powder Technol. 2020, 374, 462–469. [Google Scholar] [CrossRef]
- Asadikia, A.; Mirjalily, S.A.A.; Nasirizadeh, N.; Kargarsharifabad, H. Characterization of thermal and electrical properties of hybrid NFs prepared with multi-walled carbon nanotubes and Fe2O3 nanoparticles. Int. Commun. Heat Mass Transf. 2020, 117, 104603. [Google Scholar] [CrossRef]
- Garg, P.; Alvarado, J.L.; Marsh, C.; Carlson, T.A.; Kessler, D.A.; Annamalai, K. An experimental study on the effect of ultrasonication on μ and heat transfer performance of multi-wall carbon nanotube-based aqueous NFs. Int. J. Heat Mass Transf. 2009, 52, 5090–5101. [Google Scholar] [CrossRef]
- Nasiri, A.; Shariaty-Niasar, M.; Rashidi, A.; Amrollahi, A.; Khodafarin, R. Effect of dispersion method on κ and stability of NF. Exp. Therm. Fluid Sci. 2011, 35, 717–723. [Google Scholar] [CrossRef]
- Ghadimi, A.; Metselaar, I.H. The influence of surfactant and ultrasonic processing on improvement of stability, κ and μ of titania NF. Exp. Therm. Fluid Sci. 2013, 51, 1–9. [Google Scholar] [CrossRef]
- Xia, G.; Jiang, H.; Liu, R.; Zhai, Y. Effects of surfactant on the stability and κ of Al2O3/de-ionized water NFs. Int. J. Therm. Sci. 2014, 84, 118–124. [Google Scholar] [CrossRef]
- Sadeghi, R.; Etemad, S.G.; Keshavarzi, E.; Haghshenasfard, M. Investigation of alumina NF stability by UV–vis spectrum. Microfluid. NFics 2015, 18, 1023–1030. [Google Scholar] [CrossRef]
- Yang, Y.; Grulke, E.A.; Zhang, Z.G.; Wu, G. Thermal and rheological properties of carbon nanotube-in-oil dispersions. J. Appl. Phys. 2006, 99, 114307. [Google Scholar] [CrossRef]
- Kole, M.; Dey, T.K. Effect of prolonged ultrasonication on the κ of ZnO-ethylene glycol NFs. Thermochim. Acta 2012, 535, 58–65. [Google Scholar] [CrossRef]
- Yu, J.; Grossiord, N.; Koning, C.E.; Loos, J. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 2007, 45, 618–623. [Google Scholar] [CrossRef]
- Ruan, B.; Jacobi, A.M. Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions. Nanoscale Res. Lett. 2012, 7, 127. [Google Scholar] [CrossRef]
- Li, F.; Li, L.; Zhong, G.; Zhai, Y.; Li, Z. Effects of ultrasonic time, size of aggregates and temperature on the stability and μ of Cu-ethylene glycol (EG) NFs. Int. J. Heat Mass Transf. 2019, 129, 278–286. [Google Scholar] [CrossRef]
- Mahbubul, I.M.; Saidur, R.; Amalina, M.A.; Niza, M.E. Influence of ultrasonication duration on rheological properties of NF: An experimental study with alumina-water NF. Int. Commun. Heat Mass Transf. 2016, 76, 33–40. [Google Scholar] [CrossRef]
- Amrollahi, A.; Hamidi, A.A.; Rashidi, A.M. The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon NF). Nanotechnology 2008, 19, 315701. [Google Scholar] [CrossRef]
- Mahbubul, I.M.; Chong, T.H.; Khaleduzzaman, S.S.; Shahrul, I.M.; Saidur, R.; Long, B.D.; Amalina, M.A. Effect of ultrasonication duration on colloidal structure and μ of alumina-water NF. Ind. Eng. Chem. Res. 2014, 53, 6677–6684. [Google Scholar] [CrossRef]
- Mahbubul, I.M.; Saidur, R.; Hepbasli, A.; Amalina, M.A. Experimental investigation of the relation between yield stress and ultrasonication period of NF. Int. J. Heat Mass Transf. 2016, 93, 1169–1174. [Google Scholar] [CrossRef]
- Said, Z.; Aslam Sohail, M.; Walvekar, R.; Liu, C. Impact of sonication durations on thermophysical properties, contact angle and surface tension of f-MWCNTs NF for heat transfer. J. Mol. Liq. 2022, 358, 119164. [Google Scholar] [CrossRef]
- Abubakr, M.; Osman, T.A.; Kishawy, H.A.; Elharouni, F.; Hegab, H.; Esawi, A.M.K. Preparation, characterization, and analysis of multi-walled carbon nanotube-based NF: An aggregate based interpretation. RSC Adv. 2021, 11, 25561–25574. [Google Scholar] [CrossRef]
- Prakash, R.; Chilambarasan, L.; Rajkumar, K. Process Parameters Effect Investigations on Μ of Water-ethylene Glycol-based α-alumina NFs: An Ultrasonic Experimental and Statistical Approach. Arab. J. Sci. Eng. 2021, 46, 11909–11921. [Google Scholar] [CrossRef]
- Dagdevir, T.; Ozceyhan, V. Optimization of process parameters in terms of stabilization and κ on water based TiO2 NF preparation by using Taguchi method and Grey relation analysis. Int. Commun. Heat Mass Transf. 2021, 120, 105047. [Google Scholar] [CrossRef]
- Lee, J.-H.; Hwang, K.S.; Jang, S.P.; Lee, B.H.; Kim, J.H.; Choi, S.U.; Choi, C.J. Effective viscosities and thermal conductivities of aqueous NFs containing low volume concentrations of Al2O3 nanoparticles. Int. J. Heat Mass Transf. 2008, 51, 2651–2656. [Google Scholar] [CrossRef]
- Graves, J.E.; Latvytė, E.; Greenwood, A.; Emekwuru, N.G. Ultrasonic preparation, stability and κ of a capped copper-methanol NF. Ultrason. Sonochem. 2019, 55, 25–31. [Google Scholar] [CrossRef]
- Yu, H.; Hermann, S.; Schulz, S.E.; Gessner, T.; Dong, Z.; Li, W.J. Optimizing sonication parameters for dispersion of single-walled carbon nanotubes. Chem. Phys. 2012, 408, 11–16. [Google Scholar] [CrossRef]
- Begum Elcioglu, E.; Murshed, S.M.S. Ultrasonically tuned surface tension and nano-film formation of aqueous ZnO NFs. Ultrason. Sonochem. 2021, 72, 105424. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Yang, S. Influence of pH and SDBS on the stability and κ of NFs. Energy Fuels 2009, 23, 2684–2689. [Google Scholar] [CrossRef]
- Apmann, K.; Fulmer, R.; Soto, A.; Vafaei, S. Κ and μ: Review and optimization of effects of nanoparticles. Materials 2021, 14, 1291. [Google Scholar] [CrossRef]
- Nguyen, V.S.; Rouxel, D.; Hadji, R.; Vincent, B.; Fort, Y. Effect of ultrasonication and dispersion stability on the cluster size of alumina nanoscale particles in aqueous solutions. Ultrason. Sonochem. 2011, 18, 382–388. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, S.; Lee, J.; Jang, S.P. Effect of particle shape on suspension stability and thermal conductivities of water-based bohemite alumina nanofluids. Energy 2015, 90, 1290–1297. [Google Scholar] [CrossRef]
- Ghorabaee, H.; Emami, M.R.S.; Shafahi, M. Effect of NF and Surfactant on Thermosyphon Heat Pipe Performance. Heat Transf. Eng. 2020, 41, 1829–1842. [Google Scholar] [CrossRef]
- Rajendiran, G.; Kuppusamy, V.B.; Shanmugasundaram, S. Experimental investigation of the effects of sonication time and volume concentration on the performance of PVT solar collector. IET Renew. Power Gener. 2018, 12, 1375–1381. [Google Scholar] [CrossRef]
- Babu, S.R.; Kumar, N.V.A.R.; Babu, P.R. Effect of moisture and sonication time on dielectric strength and heat transfer performance of transformer oil based Al2O3 NF. Int. J. Adv. Technol. Eng. Explor. 2021, 8, 1222–1233. [Google Scholar] [CrossRef]
- Siddiqui, F.R.; Tso, C.Y.; Chan, K.C.; Fu, S.C.; Chao, C.Y.H. On trade-off for dispersion stability and thermal transport of Cu-Al2O3 hybrid NF for various mixing ratios. Int. J. Heat Mass Transf. 2019, 132, 1200–1216. [Google Scholar] [CrossRef]
- Hashemzadeh, S.; Hormozi, F. An experimental study on hydraulic and thermal performances of hybrid NFs in mini-channel. J. Therm. Anal. Calorim. 2020, 140, 891–903. [Google Scholar] [CrossRef]
Name |
---|
Sodium dodecyl sulphate |
Sodium dodecylbenzene sulfonate |
Gum Arabic |
Oleic acid |
Cetyl trimethyl ammonium bromide |
Polyvinyl pyrolidone |
Nanosperse AQ |
Dodecyl trimethyl ammonium bromide |
Hexa decetyl trimethyl ammonium bromide |
Sodium hexa meta phosphate |
Span 80 |
eriochrome blackT |
Triton X100 |
Tween 80 |
Citrus acid |
3-Aminopropyl) trimethoxysilane |
Polyisobutene succinimide |
Sodium deoxycholate |
Poly(vinyl alcohol) |
Polyisobutene succinimide |
Tetramethylammonium hydroxide |
Nanofluids | IEP | References |
---|---|---|
Al2O3 | 9.1 | Kumar and Sarkar [122] |
Al2O3 | 6.2–6.8 | Zawrah et al. [73] |
MgO | 6.82 | Kumar and Sarkar [122] |
SiC | 7.56 | Kumar and Sarkar [122] |
AIN | 8.12 | Kumar and Sarkar [122] |
Cu | 7.73 | Kumar and Sarkar [122] |
MWCNT | 7.62 | Kumar and Sarkar [122] |
Al2O3 | 8.0 | Mahbubul et al. [123] |
TiO2 | 6.5 | Mahbubul et al. [124] |
TiO2 | 2–4 | Sreekumar et al. [125] |
Sb2O5 | 3–5 | Sreekumar et al. [125] |
Al2O3 | 8.0 | Cacua et al. [126] |
TiO2 | 6.2 | Chakraborty et al. [127] |
Nanofluids | pH | References |
---|---|---|
Al2O3-TiO2 (8:2, 6:4, 4:6, 2:8)/DW | 5.68–5.75 | Kumar and Sarkar [122] |
Al2O3 + MgO/DW | 8.23 | Kumar and Sarkar [128] |
Al2O3 + SiC/DW | 6.82 | Kumar and Sarkar [128] |
Al2O3 + AIN/DW | 7.56 | Kumar and Sarkar [128] |
Al2O3 + Cu/DW | 8.12 | Kumar and Sarkar [128] |
Al2O3 + MWCNT/DW | 7.73 | Kumar and Sarkar [128] |
Al2O3/DW | 7.62 | Kumar and Sarkar [128] |
Al2O3/DW | 8.0 | Wang and Li [129] |
Cu/DW | 9.5 | Wang et al. [106] |
Cu-Al2O3/DW | 5.5 | Momin et al. [130] |
SiO2-CuO/C/GL-EG (60:40) | 8–9 | Akilu et al. [131] |
SiO2-GNP/naphthenic mineral oil | 9–11 | Qing et al. [132] |
Fe3O4-GNP/DIW | 3, 5, 7, 8, and 10 | Askari et al. [101] |
Al2O3 and Al2O3-Fe (50:50)/DIW | 12 | Okonkwo et al. [133] |
Al2O3/W | 7–8.2 | Menbari et al. [85] |
CuO/W | 8–9 | Menbari et al. [85] |
Al2O3-CuO/W | 7.6–8.5 | Menbari et al. [85] |
Al2O3/EG | 6.5–7.5 | Menbari et al. [134] |
CuO/EG-W (50:50) | 8–9 | Menbari et al. [134] |
CuO/EG | 8.5–10 | Menbari et al. [134] |
Al2O3/EG-W (50:50) | 7–8 | Menbari et al. [134] |
Al2O3-CuO/EG | 7–8.2 | Menbari et al. [134] |
Al2O3-CuO/EG-W (50:50) | 7.2–8.5 | Menbari et al. [134] |
Al2O3-CuO/W | 7.5–8.5 | Menbari et al. [135] |
Al2O3-CuO/EG-W | 7–8.2 | Menbari et al. [135] |
Cu/DIW | 7.43–10.2 | Kamalgharibi et al. [86] |
Cu/EG-DIW (50:50 vol) | 7.8–9.6 | Kamalgharibi et al. [86] |
Cu/EG | 9.85–10.2 | Kamalgharibi et al. [86] |
Al2O3/W | 5.1–5.2 (sonicated) and 5.4 (without sonication) | Mahbubul et al. [123] |
MgO/EG | 9.66–10.84 | Adio et al. [120] |
Al2O3 (100 nm)/GL | 4.09 | Adio et al. [74] |
Al2O3 (80 nm)/GL | 6.26 | Adio et al. [74] |
Al2O3 (20–30 nm)/GL | 6.44 | Adio et al. [74] |
Cu-TiO2 | 7 | Sajid and Ali [92] |
Al2O3-Cu | 5.5 | Sajid and Ali [92] |
Ag-MgO | 5.74 | Sajid and Ali [92] |
SiO2-GNP | 11 | Sajid and Ali [92] |
ZnO/W | 4 | Sajid and Ali [92] |
Al2O3/BDW | 10 | Zawrah et al. [73] |
TiO2 | 7 | Chakraborty et al. [127] |
Ag-TiO2 | 7.3–8.35 (without sonication) and 7.70–8.69 (sonication) | Chakraborty et al. [127] |
Authors | Correlation | Remark |
---|---|---|
Asadikia et al. [154] | Effect of EG, Fe2O3, MWCNT, and pH on κ (κ). | |
Mahbubul et al. [124] | Effect of average cluster size and sonication time on ZP. | |
Sreekumar et al. [125] | Effect of ATO-AG and surfactant mass fraction (SMF) on solar weighted absorption fraction (SWAF). |
Reference | NFs | Vol% | Nano-Size | Surfactants | Sonication Time | Stirring Time | Measured Parameters | Stability Test |
---|---|---|---|---|---|---|---|---|
Kamalgharibi et al. [86] | CuO/EG, DIW, EG-DIW (50:50 vol%) | 0.1–0.4 wt% | 40–50 | PVP, SDS, and Triton X100 (@ 1% vol. of NF) (2-step) | 60–270 min at 18–24 KHz | 60–75 min | Sedimentation height (75 days) | Sedimentation method/visual inspection |
Li et al. [164] | Cu/EG | 1–3.8 wt% | 50 nm | No surfactant (2-step) | 15–75 min @ 20–50 °C | 20 min | μ (30 days) | Visual |
Abadeh et al. [87] | Fe3O4/DW | 1% (wt) | 20–30 nm | Citric acid, CTAB, SDS, GA, and Tween 80 (2-step) | 20–60 min (initial); 0–40 min @ 100 amplitude | 30–90 min @ 50 °C and 400–800 rpm | pH | ZP |
Afzal et al. [147] | ZnO and CuO/DIW | 0.1 wt% | CuO—30–50 nm ZnO—90 nm | OA and EBT (0.1 wt%) (2-step) | 2–8 h | 35 min | pH, μ, κ, cp, specific gravity (24 days) | UV, ZP, visual inspection |
Mahbubul et al. [123] | Al2O3/W | 0.5 vol% | 13 nm | No surfactant (2-step) | 1–5 h @ amplitude 50%, pulse on 2 s and pulse off 2 s | - - | μ, κ, and volume concentration | ρ and sedimentation |
Mahbubul et al. [124] | TiO2/DW | 0.5 vol% | 21 nm | No surfactant (2-step) | 30–180 min @ amplitude 50%, pulse on 2 s and pulse off 2 s | - | Cluster size, ZP, pH | ZP |
Asadi et al. [151] | Mg (OH)2 | 0.1–2 vol% | 20 nm | CTAB, oleic acid, and SDS (2-step) | 10–160 min | - | κ | ZP, visual |
Wang et al. [106] | Cu and Al2O3/W | 0.05–0.8 wt% | Al2O3-25 nm | SDBS (0–0.15 wt%) (2-step) | 15 min | - | pH, particle size, ZP, and κ | ZP |
Wang and Li [129] | Cu and Al2O3/W | 0.01–0.4 wt% | Al2O3-15–50 nm Cu—25–60 nm | SDBS (2-step) | - | - | pH, μ, and κ | - |
Wang and Li [177] | Cu and Al2O3/W | 0.01–0.4 wt% | Al2O3-15–50 nm Cu—25–60 nm | SDBS (0–0.14 wt%) (2-step) | 1 h | - | pH, and κ | ZP, UV, |
Seong et al. [152] | GNP/DW | 0.1 wt% | 4 nm | SDBS and SDS (1:3–3:1) of GNP | 40 min | - | ZP, κ | ZP, visual, and UV |
Khooshechin et al. [67] | CuO/DIW | 0.025–0.125wt% | 20, 40, and 60 nm | SDS (0.05–0.09 wt%) | 30%–90% of power | - | κ, h, HTC, | - |
Wei et al. [153] | WO3/EG | 0.005–5 wt% | 40 nm | - | 15–60 min | Not mentioned | κ | ZP |
Cacua et al. [126] | Al2O3/DIW | 0.1 wt% | <50 nm | CTAB (0.036 g) and SDBS (0.064 g) (2-step) | 20 min @ amplitude of 30% | - | pH, ZP, PI, average particle size | Visual, ZP, and UV |
Asadi and Alarifi [149] | MWCNT/W | 0.1–0.5 vol% | - | No surfactant (2-step) | 10–80 min | 2 h | ZP, μ | ZP, visual |
Asadi et al. [148] | MWCNT/W | 0.1–0.5 vol% | <7 nm | No surfactant (2-step) | 10–80 min | 2 h | ZP, κ | ZP, visual |
Michael et al. [83] | Al2O3/DW | 0.5–2 vol% | 13 nm | PVP (2-step) | 30–150 min | 1 h | κ and μ | ZP (particle size) |
Ghorabee et al. [181] | TiO2/DW | 0.3–1.2 wt% | 20 nm | Triton X-100 (0.1–0.3 wt%) | 5 h @ 50 °C | - | Wall temperature, thermal resistance and efficiency and h | - |
Adio et al. [74] | Al2O3/GL | 1–5 vol% | 20–30, 80, and 100 nm | No surfactant (2-step) | 1–8 h @ amplitude = 75%, 8 s—on and 2 s—off | Energy density (5 × 106–4 × 107 kJ/m3) | μ, energy density, average particle size | UV, ZP, visual |
Adio et al. [98] | MgO/EG | 1–5 vol% | 21, 105, and 125 nm | No surfactant (2-step) | 30–180 min | Energy density (2.18 × 106–13.9 × 106 kJ/m3) | μ, energy density, pH, average particle size | UV, ZP, visual |
Adio et al. [120] | MgO/EG | 1–3 vol% | 20 and 100 nm | No surfactant (2-step) | 30–180 min | Energy density (2.18 × 106–13.9 × 106 kJ/m3) | σ, energy density, pH | ZP, visual |
Amrollahi et al. [166] | MWCNT/ EG | 0.5–2.5 vol% | 1–4 nm | No surfactant (2-step) | 1–24 h | - | κ | Sedimentation |
Graves et al. [174] | Cu/methanol | 0.1% wt/vol | 25–75 nm | (Cap agent 3- Aminopropyl) trimethoxysilane (175 µL) (no surfactant; 2-step) | 30 min @ amplitude (20–100%) | - | κ, particle size and cluster, ZP, PI | ZP, UV, visual |
Mahbubul et al. [150] | Al2O3/DW | 0.5 vol% | 13 nm | No surfactant (2-step) | 0.5–5 h @ amplitude of 50%, 2 s–on and 2 s–off. | Agitated for 1 min | κ, ρ, cluster size, and μ | ZP, |
Rajendiran et al. [182] | CuO/DW | 0.05–0.2 vol% | 27 nm | No surfactant (2-step) | 1–4 h | Stirrer | κ, μ, thermal and electrical efficiency | Visual inspection |
Nasiri et al. [156] | SWCNT, FWCNT, DWCNT, MWCNT | 0.25 wt% | SWCNT-1-1 nm, FWCNT-5 nm, DWCNT-2–4 nm, MWCNT <10 nm and 10–20 nm | 1-step and 2-step (no surfactant) | Functionalized, bath (45 min), and probe (45 min with 25% amplitude) | - | κ | - |
Ghadimi and Metselaar [157] | TiO2/DW | 0.1 wt% | 25 nm | SDS (2-step) | Bath (3 h), probe (15 min) | - | κ and μ | UV, Visual, ZP, nanosize |
Xia et al. [158] | αAl2O3/ DIW | 0.1–2.5 vol% | 13 nm | SDS and PVP (2-step) @ 0.25–4 wt% | 0.25–2 h | - | κ and particle size | Visual |
Mahbubul et al. [167] | Al2O3/DW | 0.5 vol% | 13 nm | No surfactant (2-step) | 0.5–5 h @ amplitude of 50%, 2 s—on and 2 s—off. | Agitated for 1 min | cluster size and μ (under shear rate (36.7–305.8 s−1) | - |
Mahbubul et al. [168] | Al2O3/DW | 0.5 vol% | 13 nm | No surfactant (2-step) | 1–5 h @ amplitude of 50%, 2 s—on and 2 s—off. | Agitated for 1 min | Yield stress (under shear rate (12.23–305.8 s−1) | - |
Mahbubul et al. [165] | Al2O3/DW | 0.5 vol% | 13 nm | No surfactant (2-step) | 0–180 min @ amplitude of 50%, 2 s—on and 2 s—off. | Agitated for 1 min | cluster size, particle size, ZP, and μ | ZP, sedimentation |
Sadeghi et al. [159] | γAl2O3/ DIW | 1–3 vol% | 25 nm | (2-step) | 15–180 min | - | PI, ZP, UV, average cluster size, and κ | ZP, UV, |
Nguyen et al. [179] | Al2O3/W | 1 mg/ml | 13 nm | PVA (2-step) | 30–180 s @ amplitude (10%, 30%, and 60%), pulsed (0.1/0.1 and 1.0 and 1.0), and continuous (30 s and 90 s). | - | ZP and cluster size | ZP and visual inspection |
Yang et al. [160] | MWCNT | 0.21 vol% | - | Polyisobutene succinimide (0.3–8 wt%) | 5–30 min @ energy density (2.4 × 105–1.45 × 106 kJ/m3) | - | κ, μ, stress, aspect ratio | - |
Kole and Dey [161] | ZnO/EG | 0.5–3.75 vol% | 30–40 nm | No surfactant (2-step) | 4–100 h | - | κ and cluster size | Sedimentation |
Yu et al. [162] | MWCNT/ DW | 0.1–1.4 wt% | 10–20 nm | SDS @ 0.01–0.4 wt%) (2-step) | 5–120 min | - | Absorbance | UV |
Garg et al. [155] | MWCNT/ DIW | 0.1 wt% | 10–20 nm | GA @ 0.25 wt% (2-step) | 20–80 min @ 57 J/g—290 J/g | 5 min | κ, μ, h, and Nu | Visual |
Lee et al. [173] | γAl2O3/ DIW | 0.01–0.3 vol% | 30 ± 5 nm | No surfactant (2-step) | 5–30 h | - | ZP | ZP, Visual |
Ruan and Jacobi [163] | MWCNT/EG | 0.5 wt% | 10–20 nm | GA @ 0.25 wt% (2-step) | 5–1355 min @ continuous and pulse (0.8 s—on and 3.2 s—off) | - | κ, μ, γ, average cluster size, CNT length | visual |
Yu et al. [175] | SWCNT/ DIW | 0.025 w/v% | - | 1 w/v% sodium deoxycholate | 10–120 min (3 mm and 6 mm tip) @ 20–120 W | - | Absorbance | UV |
Elcioglu and Murshed [176] | ZnO/DW | 0.05–0.4 vol% | 15–20 nm | No surfactant (2-step) | 0.5–4 min @ amplitude 40% and 100% | 30 min | Surface tension | - |
Reference | NFs | Vol% | Nano-Size | Surfactants | Sonication Time | Stirring | Measured Parameters | Stability Test |
---|---|---|---|---|---|---|---|---|
Xian et al. [81] | GNP-TiO2 (50:50 wt%)/DW-EG (60:40 wt%) | 0.025—0.1 wt% | GNP—5 nm TiO2—<4 nm | CTAB, PVP, Triton X100, SDS, SDC, SDBS, (1:1 conc. of NP) (2-step) | 15–90 min @ 60% amplitude | 30 min and 500 rpm | Absorbance and ZP (40 days) | Sedimentation method, UV, and ZP |
Abbasi et al. [72] | f-MWCNT-γAl2O3 (1:1 wt%)/DIW | 0.1 wt% | f-MWCNT—OD = 10–50 | GA (0.01 VF) (2-step) | 1 h | - | κ (45 days) | Visual |
Shahsavar et al. [146] | (CNT + Fe3O4)/ DIW | CNT—0.11—1.535 wt% Fe3O4—0.494—2.428 wt% | CNT—10–30 nm Fe3O4—13 nm | GA (0.026–0.227)—CNT and TMAH (0.046–0.227)—Fe3O4 (2-step) | 2.5–10 min | - | κ (30 days) | visual |
Aparna et al. [79] | γAl2O3-Ag/DW (50:50, 30:70, 70:30) | 0.005–0.1 vol% | Ag—3–25 nm γAl2O3—5–30 nm | PVP (2-step) | 0.5–4 h @ 5 min (on) and 3 min (off) | 4 h | κ (24 h) | ZP, visual |
Qing et al. [132] | SiO2-GNP/naphthenic oil | 0.01–0.08 wt% | - | No surfactant (2-step) | 4 h | - | pH, μ, κ, and σ (350 h -sedimentation, 14 days visual inspection) | Sedimentation rate, visual, ZP, UV |
Mousavi et al. [78] | CuO-MgO-TiO2/DW (60:30:10) | 0.1–0.5 vol% | CuO—40 nm MgO—25–45 TiO2—18–23 | SDS (2-step) | 20–150 min sonication power (350–400 W) | 90 min | κ (30 days) | ZP, stability time |
Mousavi et al. [84] | MgO-TiO2/DW (50:50) | 0.1–0.5 vol% | MgO—25–45 TiO2—18–23 | SDS—0.35 wt% (2-step) | 20–100 min with sonication power (250–370 W) | 60 min | κ (>3 days) | ZP, stability time |
Siddiqui et al. [184] | Cu-Al2O3/DIW (0.3:0.7, 0.5:0.5, and 0.7:0.3) | 0.0005%–0.0105% | Cu—25 nm Al2O3—13 nm | No surfactant (2-step) | 10–30 min | No stirring | κ, μ, and ρ (240 h) | Sedimentation velocity, ZP, polydispersity index, and effective diameter |
Ramadhan et al. [109] | Al2O3+TiO2+ SiO2/ EG-W (40:60 vol%) (0.3:0.3:0.3) | 0.05–0.3 vol% | Al2O3—13 nm TiO2—50 nm SiO2—30 nm | No surfactant (2-step) | 0.5–10 h | 120 min | Concentration ratio (14 days) | UV, sedimentation, visual, and ZP |
Hormozi et al. [65] | Al2O3-Ag/DW (97.5:2.5) | 0. 2 vol% | Al2O3—55 nm Ag—25 nm Al2O3-Ag—80 nm | SDS and PVP (0.1–0.4 wt%) (2-step) | - | - | Nu, ΔP, η | - |
Menbari et al. [134] | CuO + γAl2O3, CuO, and γAl2O3/W and EG-W (50:50) | 0.0001–0.008 vol% | CuO—40 nm γAl2O3—≤100 nm | SHMP@ different mass fractions (2-step) | (20–120 min @ amplitude = 70% | - | pH, μ, absorbance | UV |
Menbari et al. [85] | CuO + γAl2O3, CuO, and γAl2O3/DW | 0.0001–0.008 vol% | CuO—40 nm γAl2O3—≤100 nm | SHMP@ different mass fractions (2-step) | (20–120 min @ amplitude = 70% | - | pH, μ, absorbance (1 month) | UV |
Ghafurian et al. [71] | MWCNT-GNP/sea water (1:1) | 0.001–0.04 wt% | MWCNT- 20–30 GNP—40 | GA (2-step) | 30–240 min | - | pH, temperature rise, particle size, light intensity, evaporation rate, and evaporation efficiency | UV, ZP, visual |
Nabil et al. [82] | TiO2 + SiO2/W-EG (60:40 vol) (50:50 vol%) | 0.5–3 vol% | TiO2—50 nm SiO2—22 nm | No surfactant (2-step) | 0–2 h | Not stated | Absorbance (30 days) | UV, sedimentation, |
Sreekumar et al. [125] | ATO-Ag/DIW | 0.01–0.2 vol% | ATO-Ag—20–50 nm Ag—10 nm | SDS (0.1–0.2 vol%) | - | - | Solar weighted absorption percentage, κ | Visual, UV |
Joseph et al. [64] | SiO2/Ag-CuO/DIW | CuO—< 50 nm | SDS (200–2000 mg/L) | 15 min | 30 min | Solar weighted absorption percentage, κ | UV | |
Menbari et al. [135] | CuO + γAl2O3, CuO, and γAl2O3/EG-DW (50:50) | CuO-0.001 vol% γAl2O3-0.04 vol% | CuO—40 nm γAl2O3—100 nm | SHMP (0.2–2%) (2-step) | (20–120 min @ amplitude = 70% | - | pH, μ, absorbance (1 month) | UV |
Asadikia et al. [154] | Fe2O3-MWCNT/EG-W (30–70 v/v) | Fe2O3- 0.1–2% w/v) MWCNT- 0.01–1% w/v) | Fe2O3—20 nm MWCNT- 40 nm | - | 2 h | - | κ | - |
Giwa et al. 2020a [75] | γAl2O3-γFe2O3/DIW * DIW-EG (50:50) (25:75) | 0.05–0.75 vol% | γAl2O3—20–30 nm γFe2O3—20–30 nm | SDS and SDBS (0.8–1.3%) (2-step) | 60–240 min @ amplitude (50–70%) and frequency (60–80%) | - | σ | Absorbance and visual inspection |
Giwa et al. 2020b [77] | MgO/, ZnO/, MgO-ZnO/DIW (20:80–80:20) | 0.1 vol% | MgO—20 and 100 nm ZnO—20 nm | SDS (0.6–1.2%) (2-step) | 30–120 min @ amplitude (70–80%) | - | σ and pH | Absorbance amd visual inspection |
Giwa et al. 2020c [66] | MWCNT-Fe2O3/DIW (20:80) | 0.05–0.4 vol% | MWCNT—10–20 nm Fe2O3—20–30 nm | SDS (0.5–1.2%) (2-step) | 2 h @ amplitude (70%), 5 s—on and 2 s—off | - | σ | Absorbance and visual inspection |
Chakraborty et al. [127] | TiO2 and TiO2/Ag | 0.1–0.4 wt% | - | No surfactant (2-step) | 10–30 min | Stirred | pH | Settling height and time |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasmin, H.; Giwa, S.O.; Noor, S.; Aybar, H.Ş. Influence of Preparation Characteristics on Stability, Properties, and Performance of Mono- and Hybrid Nanofluids: Current and Future Perspective. Machines 2023, 11, 112. https://doi.org/10.3390/machines11010112
Yasmin H, Giwa SO, Noor S, Aybar HŞ. Influence of Preparation Characteristics on Stability, Properties, and Performance of Mono- and Hybrid Nanofluids: Current and Future Perspective. Machines. 2023; 11(1):112. https://doi.org/10.3390/machines11010112
Chicago/Turabian StyleYasmin, Humaira, Solomon O. Giwa, Saima Noor, and Hikmet Ş. Aybar. 2023. "Influence of Preparation Characteristics on Stability, Properties, and Performance of Mono- and Hybrid Nanofluids: Current and Future Perspective" Machines 11, no. 1: 112. https://doi.org/10.3390/machines11010112
APA StyleYasmin, H., Giwa, S. O., Noor, S., & Aybar, H. Ş. (2023). Influence of Preparation Characteristics on Stability, Properties, and Performance of Mono- and Hybrid Nanofluids: Current and Future Perspective. Machines, 11(1), 112. https://doi.org/10.3390/machines11010112