# Using Pose-Dependent Model Predictive Control for Path Tracking with Bounded Tensions in a 3-DOF Spatial Cable Suspended Parallel Robot

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Dynamic Model of the Suspended Load

## 3. Control Design

#### 3.1. Control Architecture

#### 3.2. Model Formulation for Control Design

#### 3.3. Calculation of the Optimal Tensions

#### 3.4. Calculation of Motor Torques

## 4. Numerical Results

#### 4.1. Description of the Test Case

#### 4.2. Test Cases

#### 4.2.1. Test 1: Point-to-Point Motion through a Position Step Reference

#### 4.2.2. Test 2: Circular Path

#### 4.2.3. Test 3: Gerono’s Lemniscate Path

#### 4.2.4. Test 4: Straight Line

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Scalera, L.; Gallina, P.; Seriani, S.; Gasparetto, A. Cable-Based Robotic Crane (CBRC): Design and Implementation of Overhead Traveling Cranes Based on Variable Radius Drums. IEEE Trans. Robot.
**2018**, 34, 474–485. [Google Scholar] [CrossRef] - Williams II, R.L.; Gallina, P. Planar cable-direct-driven robots: Design for wrench exertion. J. Intell. Robot. Syst.
**2002**, 35, 203–219. [Google Scholar] [CrossRef] - Mattioni, V.; Ida’, E.; Carricato, M. Design of a planar cable-driven parallel robot for non-contact tasks. Appl. Sci.
**2021**, 11, 9491. [Google Scholar] [CrossRef] - Mattioni, V.; Idà, E.; Carricato, M. Force-Distribution Sensitivity to Cable-Tension Errors: A Preliminary Investigation. In Proceedings of the International Conference on Cable-Driven Parallel Robots, Virtual Conference, 7–9 July 2021; Springer: Cham, Switzerland, 2021; pp. 129–141. [Google Scholar]
- Trevisani, A. Underconstrained planar cable-direct-driven robots: A trajectory planning method ensuring positive and bounded cable tensions. Mechatronics
**2010**, 20, 113–127. [Google Scholar] [CrossRef] - Zhang, N.; Shang, W.; Cong, S. Dynamic trajectory planning for a spatial 3-DoF cable-suspended parallel robot. Mech. Mach. Theory
**2018**, 122, 177–196. [Google Scholar] [CrossRef] - Korayem, M.H.; Tourajizadeh, H.; Bamdad, M. Dynamic load carrying capacity of flexible cable suspended robot: Robust feedback linearization control approach. J. Intell. Robot. Syst. Theory Appl.
**2010**, 60, 341–363. [Google Scholar] [CrossRef] - Khosravi, M.A.; Taghirad, H.D. Robust PID control of fully-constrained cable driven parallel robots. Mechatronics
**2014**, 24, 87–97. [Google Scholar] [CrossRef] - Heyden, T.; Maier, T.; Woernle, C. Trajectory Tracking Control for a Cable Suspension Manipulator. In Advances in Robot Kinematics; Springer: Dordrecht, The Netherlands, 2002; pp. 125–134. [Google Scholar] [CrossRef]
- Boscariol, P.; Gasparetto, A.; Zanotto, V. Active position and vibration control of a flexible links mechanism using model-based predictive control. J. Dyn. Syst. Meas. Control Trans. ASME
**2010**, 132, 014506. [Google Scholar] [CrossRef] - Boscariol, P.; Gasparetto, A.; Zanotto, V. Simultaneous position and vibration control system for flexible link mechanisms. Meccanica
**2011**, 46, 723–737. [Google Scholar] [CrossRef] - Ghasemi, A.; Eghtesad, M.; Farid, M. Constrained model predictive control of the redundant cable robots. In Proceedings of the 2008 World Automation Congress, Waikoloa, HI, USA, 28 September–2 October 2008. [Google Scholar]
- Qi, R.; Rushton, M.; Khajepour, A.; Melek, W.W. Decoupled modeling and model predictive control of a hybrid cable-driven robot (HCDR). Rob. Auton. Syst.
**2019**, 118, 1–12. [Google Scholar] [CrossRef] - Song, C.; Lau, D. Workspace-Based Model Predictive Control for Cable-Driven Robots. IEEE Trans. Robot.
**2022**, 1–20. [Google Scholar] [CrossRef] - Santos, J.C.; Chemori, A.; Gouttefarde, M. Redundancy Resolution Integrated Model Predictive Control of CDPRs: Concept, Implementation and Experiments. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 3889–3895. [Google Scholar] [CrossRef]
- Xiang, S.; Gao, H.; Liu, Z.; Gosselin, C. Dynamic transition trajectory planning of three-DOF cable-suspended parallel robots via linear time-varying MPC. Mech. Mach. Theory
**2020**, 146, 103715. [Google Scholar] [CrossRef] - Wang, L. Model Predictive Control System Design and Implementation Using MATLAB
^{®}; Springer: London, UK, 2009; ISBN 978-1-84882-331-0. [Google Scholar] - Riehl, N.; Gouttefarde, M.; Baradat, C.; Pierrot, F. On the determination of cable characteristics for large dimension cable-driven parallel mechanisms. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 4709–4714. [Google Scholar] [CrossRef]
- Khosravi, M.A.; Taghirad, H.D. Dynamic analysis and control of cable driven robots with elastic cables. Trans. Can. Soc. Mech. Eng.
**2011**, 35, 543–557. [Google Scholar] [CrossRef] [Green Version] - Nguyen, D.Q.; Gouttefarde, M.; Company, O.; Pierrot, F. On the simplifications of cable model in static analysis of large-dimension cable-driven parallel robots. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 928–934. [Google Scholar] [CrossRef] [Green Version]
- Sanalitro, D.; Savino, H.J.; Tognon, M.; Cortés, J.; Franchi, A. Full-Pose Manipulation Control of a Cable-Suspended Load with Multiple UAVs under Uncertainties. IEEE Robot. Autom. Lett.
**2020**, 5, 2185–2191. [Google Scholar] [CrossRef] [Green Version] - Oh, S.R.; Agrawal, S.K. Cable Suspended Planar Robots With Redundant Cables: Controllers With Positive Tensions. IEEE Trans. Robot.
**2005**, 21, 457–465. [Google Scholar] [CrossRef] - Lahouar, S.; Ottaviano, E.; Zeghoul, S.; Romdhane, L.; Ceccarelli, M. Collision free path-planning for cable-driven parallel robots. Rob. Auton. Syst.
**2009**, 57, 1083–1093. [Google Scholar] [CrossRef] - Carretero, J.A.; Ebrahimi, I.; Boudreau, R. Overall Motion Planning for Kinematically Redundant Parallel Manipulators. J. Mech. Robot.
**2012**, 4, 024502. [Google Scholar] [CrossRef] - Rasheed, T.; Marquez-Gamez, D.; Long, P.; Caro, S. Optimal kinematic redundancy planning for planar mobile cable-driven parallel robots. In Proceedings of the The ASME 2018 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Quebec City, QC, Canada, 26–29 August 2018; Volume 5B-2018, pp. 1–10. [Google Scholar] [CrossRef] [Green Version]
- Vieira, H.L.; Fontes, J.V.C.; Beck, A.T.; Da Silva, M.M. Reliable and Failure-Free Workspaces for Motion Planning Algorithms for Parallel Manipulators Under Geometrical Uncertainties. J. Comput. Nonlinear Dyn.
**2019**, 14, 021005. [Google Scholar] [CrossRef] - Araújo, J.M.; Bettega, J.; Dantas, N.J.B.; Dórea, C.E.T.; Richiedei, D.; Tamellin, I. Vibration Control of a Two-Link Flexible Robot Arm with Time Delay through the Robust Receptance Method. Appl. Sci.
**2021**, 11, 9907. [Google Scholar] [CrossRef] - Gasparetto, A.; Boscariol, P.; Lanzutti, A.; Vidoni, R. Trajectory Planning in Robotics. Math. Comput. Sci.
**2012**, 6, 269–279. [Google Scholar] [CrossRef] - Gasparetto, A.; Boscariol, P.; Lanzutti, A.; Vidoni, R. Path Planning and Trajectory Planning Algorithms: A General Overview. In Motion and Operation Planning of Robotic Systems. Mechanisms and Machine Science; Springer: Cham, Switzerland, 2015; Volume 29. [Google Scholar] [CrossRef]
- Boscariol, P.; Richiedei, D. Optimization of motion planning and control for automatic machines, robots and multibody systems. Appl. Sci.
**2020**, 10, 4982. [Google Scholar] [CrossRef]

**Figure 6.**Path tracking response of the circular path: spatial representation (

**a**) and its contour error (

**b**).

**Figure 8.**Path tracking response of the Gerono’s lemniscate: spatial representation (

**a**) and its contour error (

**b**).

**Figure 10.**Path tracking response of the straight line: spatial representation (

**a**) and its contour error (

**b**).

Parameter | Value |
---|---|

${J}_{m,1},{J}_{m,2},{J}_{m,3}$ | $2.6\times {10}^{-5}{\mathrm{kgm}}^{2}$ |

${f}_{v,1},{f}_{v,2},{f}_{v,3}$ | $3\times {10}^{-5}\mathrm{Nms}/\mathrm{rad}$ |

${r}_{1},{r}_{2},{r}_{3}$ | $0.036\mathrm{m}$ |

$m$ | $2.94\mathrm{kg}$ |

${T}_{\mathrm{min}};{T}_{\mathrm{max}}$ | $5;200\mathrm{N}$ |

${T}_{s}$ | $2\times {10}^{-3}\mathrm{s}$ |

${N}_{c};{N}_{p}$ | $1;90$ |

${R}_{Y};{R}_{\Delta T}$ | ${I}_{240};1\times {10}^{-3}{I}_{3}$ |

${A}_{1}$ | ${\left[\begin{array}{ccc}-0.89& 0.85& 0\end{array}\right]}^{T}$ |

${A}_{2}$ | ${\left[\begin{array}{ccc}0.89& 0.85& 0\end{array}\right]}^{T}$ |

${A}_{3}$ | ${\left[\begin{array}{ccc}0& -0.85& 0\end{array}\right]}^{T}$ |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bettega, J.; Richiedei, D.; Trevisani, A.
Using Pose-Dependent Model Predictive Control for Path Tracking with Bounded Tensions in a 3-DOF Spatial Cable Suspended Parallel Robot. *Machines* **2022**, *10*, 453.
https://doi.org/10.3390/machines10060453

**AMA Style**

Bettega J, Richiedei D, Trevisani A.
Using Pose-Dependent Model Predictive Control for Path Tracking with Bounded Tensions in a 3-DOF Spatial Cable Suspended Parallel Robot. *Machines*. 2022; 10(6):453.
https://doi.org/10.3390/machines10060453

**Chicago/Turabian Style**

Bettega, Jason, Dario Richiedei, and Alberto Trevisani.
2022. "Using Pose-Dependent Model Predictive Control for Path Tracking with Bounded Tensions in a 3-DOF Spatial Cable Suspended Parallel Robot" *Machines* 10, no. 6: 453.
https://doi.org/10.3390/machines10060453