Adaptive Adjustment Strategy for Walking Characteristics of Single-Legged Exoskeleton Robots
Abstract
:1. Introduction
2. Experimental Platform
2.1. Mechanical Structure
2.2. Acquisition and Communication System
3. Adaptive Adjustment Strategy
3.1. Joint Angle Fitting
3.2. Adaptive Adjustment Strategy
3.2.1. Parameterization of Fitting Equations
3.2.2. Modification of Stride Frequency Parameter a
3.2.3. Modification of Stride Length Parameter c
4. Experiment
4.1. Experimental Process
4.2. Analysis of Experimental Data
4.2.1. Adjustment Experiment of Stride Length Parameter c
4.2.2. Adjustment Experiment of Stride Frequency Parameter a
4.2.3. Adaptive Adjustment Experiment of Stride Frequency and Length
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lenzi, T.; Cempini, M.; Hargrove, L.; Kuiken, T. Design, development, and testing of a lightweight hybrid robotic knee prosthesis. Int. J. Robot. Res. 2018, 37, 953–976. [Google Scholar] [CrossRef]
- Zhou, L.B.; Chen, W.H.; Chen, W.J.; Bai, S.P.; Zhang, J.B.; Wang, J.H. Design of a passive lower limb exoskeleton for walking assistance with gravity compensation. Mech. Mach. Theory 2020, 150, 103840. [Google Scholar] [CrossRef]
- Du, G.; Chen, M.; Liu, C.; Zhang, B.; Zhang, P. Online robot teaching with natural human-robot interaction. IEEE Trans. Ind. Electron. 2018, 65, 9571–9581. [Google Scholar] [CrossRef]
- Li, Z.J.; Su, C.Y.; Wang, L.Y.; Chen, Z.T.; Chai, T.Y. Nonlinear disturbance observer- based control design for a robotic exoskeleton incorporating fuzzy approximation. IEEE Trans. Ind. Electron. 2015, 62, 5763–5775. [Google Scholar] [CrossRef]
- Lu, R.Q.; Li, Z.J.; Su, C.Y.; Xue, A. Development and learning control of a human limb with a rehabilitation exoskeleton. IEEE Trans. Ind. Electron. 2014, 61, 3776–3785. [Google Scholar] [CrossRef]
- Li, Z.J.; Kang, Y.; Xiao, Z.Y.; Song, W.G. Human-robot coordination control of robotic exoskeletons by skill transfers. IEEE Trans. Ind. Electron. 2017, 64, 5171–5181. [Google Scholar] [CrossRef]
- Capitani, S.L.; Bianchi, M.; Secciani, N. Model-based mechanical design of a passive lower-limb exoskeleton for assisting workers in shotcrete projection. Meccanica 2021, 56, 195–210. [Google Scholar] [CrossRef]
- Veneman, J.F.; Kruidhof, R.; Hekman, E.E.G.; Ekkelenkamp, R.; Asseldonk, E.H.F.V.; van der Kooij, H. Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Sankai, Y. HAL: Hybrid Assistive Limb Based on Cybernics. In Proceedings of the 13th International Symposium on Robotics Research (ISSR), Berlin/Heidelberg, Germany, 26–29 November 2010; pp. 25–34. [Google Scholar] [CrossRef]
- Kawamoto, H.; Sankai, Y. Comfortable power assist control method for walking aid by HAL-3. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Yasmine Hammamet, Tunisia, 6–9 October 2002; Volume 4, p. 6. [Google Scholar] [CrossRef]
- Lee, S.; Sankai, Y. Power assist control for leg with HAL-3 based on virtual torque and impedance adjustment. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Yasmine Hammamet, Tunisia, 6–9 October 2002; Volume 4, p. 6. [Google Scholar] [CrossRef]
- Kawamoto, H.; Lee, S.; Kanbe, S.; Sankai, Y. Power assist method for HAL-3 using EMG-based feedback controller. In Proceedings of the SMC’03 Conference, 2003 IEEE International Conference on Systems, Man and Cybernetics, Conference Theme–System Security and Assurance (Cat. No.03CH37483), Washington, DC, USA, 8 October 2003; pp. 1648–1653. [Google Scholar] [CrossRef]
- Talaty, M.; Esquenazi, A.; Briceño, J.E. Differentiating ability in users of the ReWalkTM powered exoskeleton: An analysis of walking kinematics. In Proceedings of the 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, WA, USA, 24–26 June 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Neuhaus, P.; Kazerooni, H. Design and control of human assisted walking robot. In Proceedings of the 2000 ICRA, Millennium Conference, IEEE International Conference on Robotics and Automation, Symposia Proceedings (Cat. No.00CH37065), San Francisco, CA, USA, 24–28 April 2000; pp. 563–569. [Google Scholar] [CrossRef]
- Li, M.T.; Deng, J.; Zha, F.S.; Qiu, S.Y.; Wang, X.; Chen, F. Towards Online Estimation of Human Joint Muscular Torque with a Lower Limb Exoskeleton Robot. Appl. Sci. 2018, 8, 1610. [Google Scholar] [CrossRef] [Green Version]
- Contreras-Vidal, J.L.; Bhagat, N.A.; Brantley, J.; Cruz-Garza, J.G.; He, Y.; Manley, Q.; Nakagome, S.; Nathan, K.; Tan, S.H.; Zhu, F.; et al. Powered exoskeletons for bipedal locomotion after spinal cord injury. Int. J. Neural Eng. 2016, 13, 031001. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, L.; Huang, D. Development and Repetitive Learning Control of Lower Limb Exoskeleton Driven by Electrohydraulic Actuators. IEEE Trans. Ind. Electron. 2017, 64, 4169–4178. [Google Scholar] [CrossRef]
- Tang, L.; Shi, P. Design and analysis of a gait rehabilitation cable robot with pairwise cable arrangement. Int. J. Mech. Sci. Technol. 2021, 35, 3136–3170. [Google Scholar] [CrossRef]
- Guo, W.; Qiu, S.Y.; Zha, F.S.; Deng, J.; Wang, X.; Chen, F. A novel active balance assistive control strategy based on virtual stiffness model of XCoM. Assem. Autom. 2019, 40, 132–142. [Google Scholar] [CrossRef]
- Qiu, S.Y.; Guo, W.; Wang, P.F.; Chen, F.; Zha, F.S.; Wang, X.; Deng, J. A Unified Active Assistance Control Framework of Hip Exoskeleton for Walking and Balance Assistance. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 8185–8192. [Google Scholar] [CrossRef]
- Gardner, A.D.; Potgieter, J.; Noble, F.K. A review of commercially available exoskeletons’ capabilities. In Proceedings of the 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Auckland, New Zealand, 21–23 November 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Esquenazi, A.; Talaty, M.; Jayaraman, A. Powered Exoskeletons for Walking Assistance in Persons with Central Nervous System Injuries: A Narrative Review. PM&R 2017, 9, 46–62. [Google Scholar] [CrossRef]
- Qiu, S.Y.; Guo, W.; Caldwell, D.; Chen, F. Exoskeleton Online Learning and Estimation of Human Walking Intention Based on Dynamical Movement Primitives. IEEE Trans. Cogn. Dev. Syst. 2020, 13, 67–79. [Google Scholar] [CrossRef]
- Kawamoto, H.; Hayashi, T.; Sakurai, T.; Eguchi, K.; Sankai, Y. Development of single leg version of HAL for hemiplegia. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 5038–5043. [Google Scholar] [CrossRef]
- Hassan, M.; Kadone, H.; Suzuki, K.; Sankai, Y. Wearable Gait Measurement System with an Instrumented Cane for Exoskeleton Control. Sensors 2014, 14, 1705–1722. [Google Scholar] [CrossRef] [Green Version]
- Moon, D.H.; Kim, D.; Hong, Y.D. Development of a Single Leg Knee Exoskeleton and Sensing Knee Center of Rotation Change for Intention Detection. Sensors 2019, 19, 3960. [Google Scholar] [CrossRef] [Green Version]
- Moon, D.H.; Kim, D.; Hong, Y.D. Intention Detection Using Physical Sensors and Electromyogram for a Single Leg Knee Exoskeleton. Sensors 2019, 19, 4447. [Google Scholar] [CrossRef] [Green Version]
- Shi, D.; Zhang, W.; Zhang, W.; Ding, X. A Review on Lower Limb Rehabilitation Exoskeleton Robots. Chin. J. Mech. Eng. 2019, 32, 1–11. [Google Scholar] [CrossRef] [Green Version]
- McCain, E.M.; Dick, T.J.; Giest, T.N.; Nuckols, R.W.; Lewek, M.D.; Saul, K.R.; Sawicki, G.S. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control. J. Neuroeng. Rehabil. 2019, 16, 57. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Zhou, X. Recurrent-Neural-Network-Based Velocity-Level Redundancy Resolution for Manipulators Subject to a Joint Acceleration Limit. IEEE Trans. Ind. Electron. 2019, 66, 3573–3582. [Google Scholar] [CrossRef]
- Hassan, M.; Kadone, H.; Suzuki, K.; Sankai, Y. Exoskeleton robot control based on cane and body joint synergies. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 7–12 October 2012; pp. 1609–1614. [Google Scholar] [CrossRef]
- Petrović, S.; Devedžić, G.; Ristić, B.; Matić, A.; Stojanović, R. Foot pressure distribution and contact duration pattern during walking at self-selected speed in young adults. In Proceedings of the 2013 2nd Mediterranean Conference on Embedded Computing (MECO), Budva, Serbia, 15–20 June 2013; pp. 172–175. [Google Scholar] [CrossRef]
- Tran, A.V.; Zhang, X.; Zhu, B. The Development of a New Piezoresistive Pressure Sensor for Low Pressures. IEEE Trans. Ind. Electron. 2018, 65, 6487–6496. [Google Scholar] [CrossRef]
- Guizzo, E.; Goldstein, H. The rise of the body bots [robotic exoskeletons. IEEE Spectr. 2005, 42, 50–56. [Google Scholar] [CrossRef]
Height (cm) | Weight (kg) | Thigh Length (cm) | Shank Length (cm) | |
---|---|---|---|---|
subject 1 | 170 | 60 | 45 | 37 |
subject 2 | 180 | 77 | 49 | 40 |
subject 3 | 175 | 70 | 47 | 38.5 |
subject 4 | 168 | 58 | 44 | 36 |
subject 5 | 175 | 62 | 48 | 39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Ye, D.; Chen, Q.; Liu, C.; Dong, H.; Cheng, D. Adaptive Adjustment Strategy for Walking Characteristics of Single-Legged Exoskeleton Robots. Machines 2022, 10, 134. https://doi.org/10.3390/machines10020134
Lu Z, Ye D, Chen Q, Liu C, Dong H, Cheng D. Adaptive Adjustment Strategy for Walking Characteristics of Single-Legged Exoskeleton Robots. Machines. 2022; 10(2):134. https://doi.org/10.3390/machines10020134
Chicago/Turabian StyleLu, Zhiguo, Dehong Ye, Qingcai Chen, Chong Liu, Hu Dong, and Dexin Cheng. 2022. "Adaptive Adjustment Strategy for Walking Characteristics of Single-Legged Exoskeleton Robots" Machines 10, no. 2: 134. https://doi.org/10.3390/machines10020134
APA StyleLu, Z., Ye, D., Chen, Q., Liu, C., Dong, H., & Cheng, D. (2022). Adaptive Adjustment Strategy for Walking Characteristics of Single-Legged Exoskeleton Robots. Machines, 10(2), 134. https://doi.org/10.3390/machines10020134