Towards a New Mindset for Interaction Design—Understanding Prerequisites for Successful Human–Machine Cooperation Using the Example of Food Production
Abstract
:1. Introduction
2. Challenges for Machine Operators in Industrial Production
2.1. System Designers View Human Operators as Unreliable and Inefficient, but Designers Are Also Human, and Thus Also Unreliable
2.2. Takeover in Abnormal Situations: Experienced Operators Become Inexperienced Ones but Need to Be More Rather Than Less Skilled
2.3. Through Prolonged Passive Monitoring Operators Lose the Necessary Activation and in the Long Term the Necessary Competence for Effective Takeover
2.3.1. Situation Awareness and Out-of-the-Loop Performance Problems
2.3.2. System Knowledge and Decay of Competence
3. Avoiding the Ironies of Automation by a New Approach to Interaction Design
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bainbridge, L. Ironies of Automation. Automatica 1983, 19, 775–779. [Google Scholar] [CrossRef]
- Baxter, G.; Rooksby, J.; Wang, Y.; Khajeh-Hosseini, A. The Ironies of Automation: Still Going Strong at 30? In Proceedings of the 30th European Conference on Cognitive Ergonomics, Edinburgh, UK, 28 August 2012; Association for Computing Machinery: New York, NY, USA, 2012; pp. 65–71. [Google Scholar]
- Strauch, B. Ironies of Automation: Still Unresolved After All These Years. IEEE Trans. Hum. Mach. Syst. 2017, 48, 419–433. [Google Scholar] [CrossRef]
- Taylor, F.W. Scientific Management; Harper and Row: New York, NY, USA, 1947. [Google Scholar]
- Hollnagel, E. Coping with Complexity: Past, Present and Future. Cogn. Technol. Work 2012, 14, 199–205. [Google Scholar] [CrossRef]
- Fischer, A.; Greiff, S.; Funke, J. The Process of Solving Complex Problems. J. Probl. Solving 2012, 4, 19–42. [Google Scholar] [CrossRef] [Green Version]
- Kluge, A. Controlling Complex Technical Systems: The Control Room Operator’s Tasks in Process Industries. In The Acquisition of Knowledge and Skills for Taskwork and Teamwork to Control Complex Technical Systems; Springer: Dordrecht, The Netherlands, 2014; pp. 11–47. ISBN 978-94-007-5048-7. [Google Scholar]
- Müller, R.; Oehm, L. Process Industries versus Discrete Processing: How System Characteristics Affect Operator Tasks. Cogn. Technol. Work 2019, 21, 337–356. [Google Scholar] [CrossRef]
- Klaeger, T.; Schult, A.; Oehm, L. Using Anomaly Detection to Support Classification of Fast Running (Packaging) Processes. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 22–25 July 2019. [Google Scholar]
- Goodstein, L.P. Discriminative Display Support for Process Operators. In Human Detection and Diagnosis of System Failures; Rasmussen, J., Rouse, W.B., Eds.; Springer: Boston, MA, USA, 1981; pp. 433–449. ISBN 978-1-4615-9232-7. [Google Scholar]
- Smith, P.J.; Bennett, K.B.; Stone, R.B. Representation Aiding to Support Performance on Problem-Solving Tasks. Rev. Hum. Factors Ergon. 2006, 2, 74–108. [Google Scholar] [CrossRef]
- Kagermann, H.; Wahlster, W.; Helbig, J. Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0 Final Report of the Industrie 4.0 Working Group; Forschungsunion: Berlin, Germany, 2013. [Google Scholar]
- Kinkel, S.; Friedewald, M.; Hüsing, B.; Lay, G.; Lindner, R. Arbeiten in Der Zukunft–Strukturen Und Trends Der Industriearbeit—Zukunftsreport; Büro Für Technikfolgen-Abschätzung beim Deutschen Bundestag: Berlin, Germany, 2007. [Google Scholar]
- Hirsch-Kreinsen, H. Wandel von Produktionsarbeit–“Industrie 4.0”. WSI-Mitt. 2014, 67, 421–429. [Google Scholar] [CrossRef] [Green Version]
- Hirsch-Kreinsen, H. Digitalisation and Low-Skilled Work. WISO Diskurs 2016, 19, 2016. [Google Scholar]
- Kagermann, H. Chancen von Industrie 4.0 nutzen. In Industrie 4.0 in Produktion, Automatisierung und Logistik; Bauernhansl, T., ten Hompel, M., Vogel-Heuser, B., Eds.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2014; pp. 603–614. ISBN 978-3-658-04681-1. [Google Scholar]
- Mauermann, M. Methode Zur Analyse von Reinigungsprozessen in Nicht Immergierten Systemen der Lebensmittelindustrie; Technische Universität Dresden: Dresden, Germany, 2012. [Google Scholar]
- Rasmussen, J. Risk Management in a Dynamic Society: A Modelling Problem. Saf. Sci. 1997, 27, 183–213. [Google Scholar] [CrossRef]
- Leveson, N.G. Applying Systems Thinking to Analyze and Learn from Events. Saf. Sci. 2011, 49, 55–64. [Google Scholar] [CrossRef]
- Cook, R.I. How Complex Systems Fail; Cognitive Technologies Laboratory, University of Chicago: Chicago, IL, USA, 1998. [Google Scholar]
- Whittingham, R.B. The Blame Machine: Why Human Error Causes Accidents; Elsevier, Butterworth-Heinemann: Oxford, UK, 2004; ISBN 978-0-7506-5510-1. [Google Scholar]
- Rozenblit, L.; Keil, F. The Misunderstood Limits of Folk Science: An Illusion of Explanatory Depth. Cogn. Sci. 2002, 26, 521–562. [Google Scholar] [CrossRef] [PubMed]
- Alter, A.L.; Oppenheimer, D.M.; Zemla, J.C. Missing the Trees for the Forest: A Construal Level Account of the Illusion of Explanatory Depth. J. Personal. Soc. Psychol. 2010, 99, 436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrow, C. Normal Accidents: Living with High Risk Technologies—Updated Edition; Princeton University Press: Princeton, NJ, USA, 2011; ISBN 978-1-4008-2849-4. [Google Scholar]
- Rasmussen, J.; Goodstein, L.P. Decision Support in Supervisory Control of High-Risk Industrial Systems. Automatica 1987, 23, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Report on the Accident to Airbus A320-211 Aircraft in Warsaw on 14 September 1993; Main Commission Aircraft Accident Investigation Warsaw: Warsaw, Poland, 1994.
- Windelband, L.; Fenzl, C.; Hunecker, F.; Riehle, T.; Spöttl, G.; Städtler, H.; Hribernik, K.; Thoben, K.-D. Zukünftige Qualifikationsanforderungen Durch Das “Internet Der Dinge“ in Der Logistik. In Frequenz.net (Hrsg.): Alifikationserfordernisse Durch das Internet der Dinge in der Logistik. Zusammenfassung der Studienergebnisse; Bremer Institut für Produktion und Logistik GmbH (BIBA): Bremen, Germany, 2011; pp. 5–9. [Google Scholar]
- Hollnagel, E.; Woods, D.D. Cognitive Systems Engineering: New Wine in New Bottles. Int. J. Hum. Comput. Stud. 1999, 51, 339–356. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Jensen, B.B.B.; Nordkvist, M.; Rasmussen, P.; Pedersen, B.; Kokholm, A.; Jensen, L.; Gernaey, K.V.; Krühne, U. Anomaly Analysis in Cleaning-in-Place Operations of an Industrial Brewery Fermenter. Ind. Eng. Chem. Res. 2018, 57, 12871–12883. [Google Scholar] [CrossRef] [Green Version]
- Dekker, S.W.A.; Woods, D.D. MABA-MABA or Abracadabra? Progress on Human-Automation Co-Ordination. Cogn. Technol. Work 2002, 4, 240–244. [Google Scholar] [CrossRef]
- Flugunfalluntersuchungsstelle. Aircraft Incident Report Airbus A-310-304 near Moscow on February 11, 1991 File-No.: & X 002-0/91; Flugunfalluntersuchungsstelle beim Luftfahrt-Bundesamt: Braunschweig, Germany, 1994. [Google Scholar]
- Hattie, J.; Timperley, H. The Power of Feedback. Rev. Educ. Res. 2007, 77, 81–112. [Google Scholar] [CrossRef] [Green Version]
- Mory, E.H. Feedback Research Revisited. In Handbook of Research on Educational Communications and Technology; Routledge: London, UK, 2013; pp. 738–776. [Google Scholar]
- Endsley, M.R.; Kiris, E.O. The Out-of-the-Loop Performance Problem and Level of Control in Automation. Hum. Factors 1995, 37, 381–394. [Google Scholar] [CrossRef]
- Endsley, M.R. Design and Evaluation for Situation Awareness Enhancement. Proc. Hum. Factors Soc. Annu. Meet. 1988, 32, 97–101. [Google Scholar] [CrossRef]
- Endsley, M.R. The Application of Human Factors to the Development of Expert Systems for Advanced Cockpits. Proc. Hum. Factors Soc. Annu. Meet. 1987, 31, 1388–1392. [Google Scholar] [CrossRef]
- Mosier, K.L.; Skitka, L.J. Human Decision Makers and Automated Decision Aids: Made for Each Other? In Automation and Human Performance: Theory and Applications; CRC Press: New York, NY, USA, 1996; p. 120. [Google Scholar]
- Parasuraman, R.; Manzey, D.H. Complacency and Bias in Human Use of Automation: An Attentional Integration. Hum. Factors J. Hum. Factors Ergon. Soc. 2010, 52, 381–410. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, J. The Human Data Processor as a System Component. Bits and Pieces of a Model; Riso-M-1722; Danish Atomic Energy Commission: Roskilde, Denmark, 1974. [Google Scholar]
- Rasmussen, J. Skills, Rules, and Knowledge; Signals, Signs, and Symbols, and Other Distinctions in Human Performance Models. IEEE Trans. Syst. Man Cybern. 1983, SMC-13, 257–266. [Google Scholar] [CrossRef]
- Rasmussen, J. Information Processing and Human-Machine Interaction. An Approach to Cognitive Engineering; North-Holland Series in System Science and Engineering; North-Holland: New York, NY, USA, 1986; ISBN 978-0-444-00987-6. [Google Scholar]
- Kott, M.; Oehm, L.; Klaeger, T. Nahtqualität im Prozess bewerten Fleischwirtschaft. Fleischwirtschaft 2019, 9, 40–41. [Google Scholar]
- Rasmussen, J. Human Errors. A Taxonomy for Describing Human Malfunction in Industrial Installations. J. Occup. Accid. 1982, 4, 311–333. [Google Scholar] [CrossRef] [Green Version]
- Childs, J.M.; Spears, W.D.; Prophet, W.W. Private Pilot Flight Skill Retention 8, 16, and 24 Months Following Certification; Embry-Riddle Aeronautical University: Daytona Beach, FL, USA, 1983. [Google Scholar]
- Ashby, W.R. An Introduction to Cybernetics; Chapman & Hall: London, UK, 1956. [Google Scholar]
- Vicente, K.J. Cognitive Work Analysis: Toward Safe, Productive, and Healthy Computer-Based Work; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Bennett, K.B. Representation Aiding: Complementary Decision Support for a Complex, Dynamic Control Task. IEEE Control Syst. 1992, 12, 19–24. [Google Scholar] [CrossRef]
- Pomerantz, J.R. Visual Form Perception: An Overview. In Pattern Recognition by Humans and Machines: Visual Perception; Academic Press: Cambridge, MA, USA, 1986; Volume 2, pp. 1–30. [Google Scholar]
- Jackson, P.R.; Wall, T.D. How Does Operator Control Enhance Performance of Advanced Manufacturing Technology. Ergonomics 1991, 34, 13. [Google Scholar] [CrossRef]
- Vicente, K.J.; Rasmussen, J. Ecological Interface Design: Theoretical Foundations. IEEE Trans. Syst. Man Cybern. 1992, 22, 589–606. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pohl, R.; Oehm, L. Towards a New Mindset for Interaction Design—Understanding Prerequisites for Successful Human–Machine Cooperation Using the Example of Food Production. Machines 2022, 10, 1182. https://doi.org/10.3390/machines10121182
Pohl R, Oehm L. Towards a New Mindset for Interaction Design—Understanding Prerequisites for Successful Human–Machine Cooperation Using the Example of Food Production. Machines. 2022; 10(12):1182. https://doi.org/10.3390/machines10121182
Chicago/Turabian StylePohl, Rica, and Lukas Oehm. 2022. "Towards a New Mindset for Interaction Design—Understanding Prerequisites for Successful Human–Machine Cooperation Using the Example of Food Production" Machines 10, no. 12: 1182. https://doi.org/10.3390/machines10121182
APA StylePohl, R., & Oehm, L. (2022). Towards a New Mindset for Interaction Design—Understanding Prerequisites for Successful Human–Machine Cooperation Using the Example of Food Production. Machines, 10(12), 1182. https://doi.org/10.3390/machines10121182