Yaw Stability Research of the Distributed Drive Electric Bus by Adaptive Nonsingular Fast Terminal Sliding Mode Control
Abstract
:1. Introduction
2. Bus Dynamic Models
2.1. 2-DOF Bus Model
2.2. 7-DOF Bus Model
- (1)
- The road surface is flat and has no influence on the vertical movement of the wheels. The wheel movement caused by the dynamic load on the road surface is ignored.
- (2)
- It ignores air resistance and ramp resistance.
- (3)
- It neglects the effects of torsional vibrations and pendulum vibrations, etc.
- (4)
- The front steering wheel angles of both sides are the same when the vehicle is turning.
2.3. Tire Model
3. Controller Design
3.1. Sliding Mode Observer Design
3.2. Upper Controller Design
3.3. ANFIS Controller
3.4. Lower Controller Design
4. Simulation Results and Analysis
4.1. Sine Condition
4.2. Fishhook Condition
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, L.; Wang, Z.; Chen, C. Torque vectoring control system for distributed drive electric bus under complicated driving conditions. Assem. Autom. 2022, 42, 1–18. [Google Scholar] [CrossRef]
- Wang, J.; Yang, B.; Wang, Q.; Ni, J. Review on Vehicle Drive Technology of Torque Vectoring. Jixie Gongcheng Xuebao/J. Mech. Eng. 2020, 56, 92–104. [Google Scholar] [CrossRef]
- Medina, A.; Bistue, G.; Rubio, A. Comparison of Typical Controllers for Direct Yaw Moment Control Applied on an Electric Race Car. Vehicles 2021, 3, 127–144. [Google Scholar] [CrossRef]
- Sakhnevych, A.; dell’Annunziata, G.N.; Russo, R. On the Vehicle Stability and Maneuverability Domain Definition for Automated Vehicles. In Advances in Italian Mechanism Science; Mechanisms and Machine Science; Springer: Cham, Switzerland, 2022; pp. 331–345. [Google Scholar]
- Huang, Y.; Liang, W.; Chen, Y. Stability Regions of Vehicle Lateral Dynamics: Estimation and Analysis. J. Dyn. Syst. Meas. Control 2021, 143, 051002. [Google Scholar] [CrossRef]
- Lenzo, B.; Sorniotti, A.; Gruber, P.; Sannen, K. On the experimental analysis of single input single output control of yaw rate and sideslip angle. Int. J. Automot. Technol. 2017, 18, 799–811. [Google Scholar] [CrossRef]
- Tchamna, R.; Youn, I. Yaw rate and side-slip control considering vehicle longitudinal dynamics. Int. J. Automot. Technol. 2013, 14, 53–60. [Google Scholar] [CrossRef]
- Her, H.; Koh, Y.; Joa, E.; Yi, K.; Kim, K. An Integrated Control of Differential Braking, Front/Rear Traction, and Active Roll Moment for Limit Handling Performance. IEEE Trans. Veh. Technol. 2016, 65, 4288–4300. [Google Scholar] [CrossRef]
- Qi, Z.; Taheri, S.; Wang, B.; Yu, H. Estimation of the tyre–road maximum friction coefficient and slip slope based on a novel tyre model. Veh. Syst. Dyn. 2015, 53, 506–525. [Google Scholar] [CrossRef]
- Chindamo, D.; Lenzo, B.; Gadola, M. On the vehicle sideslip angle estimation: A literature review of methods, models, and innovations. Appl. Sci. 2018, 8, 355. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Du, H.; Lam, J.; Zhang, N.; Li, W. A Novel Observer Design for Simultaneous Estimation of Vehicle Steering Angle and Sideslip Angle. IEEE Trans. Ind. Electron. 2016, 63, 4357–4366. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, G.; Wang, J. Sideslip Angle Estimation of An Electric Ground Vehicle via Finite-frequency H∞ Approach. IEEE Trans. Transp. Electrif. 2016, 2, 200–209. [Google Scholar] [CrossRef]
- Boada, B.L.; Boada, M.J.L.; Diaz, V. Vehicle sideslip angle measurement based on sensor data fusion using an integrated ANFIS and an Unscented Kalman Filter algorithm. Mech. Syst. Signal Process. 2016, 72–73, 832–845. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Montanaro, U.; Fallah, S.; Sorniotti, A.; Lenzo, B. A gain scheduled robust linear quadratic regulator for vehicle direct yaw moment Control. Mechatronics 2018, 51, 31–45. [Google Scholar] [CrossRef]
- Nahidi, A.; Kasaiezadeh, A.; Khosravani, S.; Khajepour, A.; Chen, S.-K.; Litkouhi, B. Modular integrated longitudinal and lateral vehicle stability control for electric vehicles. Mechatronics 2017, 44, 60–70. [Google Scholar] [CrossRef]
- Ren, B.; Chen, H.; Zhao, H.; Yuan, L. MPC-based yaw stability control in in-wheel-motored EV via active front steering and motor torque distribution. Mechatronics 2016, 38, 103–114. [Google Scholar] [CrossRef]
- Li, S.; Wang, G.; Zhang, B.; Yu, Z.; Cui, G. Vehicle Yaw Stability Control at the Handling Limits Based on Model Predictive Control. Int. J. Automot. Technol. 2020, 21, 361–370. [Google Scholar] [CrossRef]
- Jin, X.; Yin, G.; Zeng, X.; Chen, J. Robust gain-scheduled output feedback yaw stability control for in-wheel-motor-driven electric vehicles with external yaw-moment. J. Frankl. Inst. 2018, 355, 9271–9297. [Google Scholar] [CrossRef]
- Peng, H.; Wang, W.; An, Q.; Xiang, C.; Li, L. Path Tracking and Direct Yaw Moment Coordinated Control Based on Robust MPC With the Finite Time Horizon for Autonomous Independent-Drive Vehicles. IEEE Trans. Veh. Technol. 2020, 69, 6053–6066. [Google Scholar] [CrossRef]
- Xu, W.; Wang, D.; Li, Y. The lateral stability control of vehicles based on sliding mode method. In Proceedings of the 2014 IEEE International Conference on Information and Automation (ICIA), Hailar, China, 28–30 July 2014; pp. 1312–1317. [Google Scholar]
- Liu, Z.; Qiao, Y.; Chen, X. A Novel Control Strategy of Straight-line Driving Stability for 4WID Electric Vehicles Based on Sliding Mode Control. In Proceedings of the 2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI), Tianjin, China, 29–31 October 2021; pp. 1–6. [Google Scholar]
- Zhang, H.; Liang, J.; Jiang, H.; Cai, Y.; Xu, X. Stability Research of Distributed Drive Electric Vehicle by Adaptive Direct Yaw Moment Control. IEEE Access 2019, 7, 106225–106237. [Google Scholar] [CrossRef]
- Guo, L.; Ge, P.; Sun, D. Fuzzy-Sliding Mode Control based Yaw Stability Control Algorithm for Four-in-wheel-motor Drive Electric Vehicle. In Proceedings of the 2019 3rd Conference on Vehicle Control and Intelligence (CVCI), Hefei, China, 21–22 September 2019; pp. 1–6. [Google Scholar]
- Lin, J.; Zou, T.; Zhang, F.; Zhang, Y. Yaw Stability Research of the Distributed Drive Electric Bus by Adaptive Fuzzy Sliding Mode Control. Energies 2022, 15, 1280. [Google Scholar] [CrossRef]
- Fu, C.; Hoseinnezhad, R.; Li, K.; Hu, M. A novel adaptive sliding mode control approach for electric vehicle direct yaw-moment control. Adv. Mech. Eng. 2018, 10, 1687814018803179. [Google Scholar] [CrossRef] [Green Version]
- Li, S.T.; Liu, H.; Zhao, D.; Li, Q.Y.; Tian, Y.T.; Wang, D.J.; Yu, D.L. Adaptive Sliding Mode Control of Lateral Stability of Four Wheel Hub Electric Vehicles. Int. J. Automot. Technol. 2020, 21, 739–747. [Google Scholar] [CrossRef]
- Asiabar, A.N.; Kazemi, R. A direct yaw moment controller for a four in-wheel motor drive electric vehicle using adaptive sliding mode control. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2019, 233, 549–567. [Google Scholar] [CrossRef]
- Ferrara, A.; Incremona, G.P.; Regolin, E. Optimization-based adaptive sliding mode control with application to vehicle dynamics control. Int. J. Robust Nonlinear Control 2019, 29, 550–564. [Google Scholar] [CrossRef]
- Ding, S.; Liu, L.; Zheng, W.X. Sliding Mode Direct Yaw-Moment Control Design for In-Wheel Electric Vehicles. IEEE Trans. Ind. Electron. 2017, 64, 6752–6762. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, H.; Shi, J.; Huang, Y.; Chen, H.; Guo, K.; Li, Q. An Adaptive Backstepping Sliding Mode Controller to Improve Vehicle Maneuverability and Stability via Torque Vectoring Control. IEEE Trans. Veh. Technol. 2020, 69, 2598–2612. [Google Scholar] [CrossRef]
- Ding, S.; Liu, L.; Park, J.H. A novel adaptive nonsingular terminal sliding mode controller design and its application to active front steering system. Int. J. Robust Nonlinear Control 2019, 29, 4250–4269. [Google Scholar] [CrossRef]
- Jagt, P.V.D.; Parsons, A.W. Road Surface Correction o f Tire Test Data. Veh. Syst. Dyn. 1996, 25, 147–165. [Google Scholar] [CrossRef]
- Sakhnevych, A. Multiphysical MF-based tyre modelling and parametrisation for vehicle setup and control strategies optimisation. Veh. Syst. Dyn. 2021, 60, 3462–3483. [Google Scholar] [CrossRef]
- Chen, Y.; Ji, Y.; Guo, K. A reduced-order nonlinear sliding mode observer for vehicle slip angle and tyre forces. Veh. Syst. Dyn. 2014, 52, 1716–1728. [Google Scholar] [CrossRef]
- Feng, Y.; Yu, X.; Han, F. On nonsingular terminal sliding-mode control of nonlinear systems. Automatica 2013, 49, 1715–1722. [Google Scholar] [CrossRef]
- Jang, J.S.R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
1.55 | 0 | 1000 | 60 | 300 | 0.17 | 0 | 0.2 |
1.6 | −34 | 1250 | 2320 | 12.8 | 0 | −0.0053 | 0.1925 |
δ | e | State of the Vehicle | Ideal Mz | Torque Distribution |
---|---|---|---|---|
>0 | >erth | oversteer | <0 | Tlf,lr > 0, Trf,rr < 0 |
>0 | <−erth | understeer | >0 | Tlf,lr < 0, Trf,rr > 0 |
<0 | >erth | understeer | <0 | Tlf,lr > 0, Trf,rr < 0 |
<0 | <−erth | oversteer | >0 | Tlf,lr < 0, Trf,rr > 0 |
Symbol | Parameter | Value | Unit |
---|---|---|---|
m | Vehicle mass | 7620 | kg |
a | Distance from center of mass to front axle | 3105 | mm |
b | Distance from center of mass to rear axle | 1385 | mm |
hg | Height of the center of mass | 1200 | mm |
df | Front wheel base | 2030 | mm |
dr | Rear wheel base | 1863 | mm |
rw | Wheel radius | 510 | mm |
J | Yaw moment of inertia of each wheel | 33 | kg·m2 |
Iz | Yaw inertia moment | 30,782 | kg·m2 |
Vehicle | Sideslip Angle (deg) | Yaw Rate (deg/s) | ||
---|---|---|---|---|
RMSE | Peak Value | RMSE | Peak Value | |
Without control | 2.56 | 5.39 | 6.63 | 24.47 |
SMC | 1.29 | 2.97 | 2.17 | 16.65 |
ANFTSM | 1.03 | 2.41 | 0.41 | 16.20 |
Vehicle | Sideslip Angle (deg) | Yaw Rate (deg/s) | ||
---|---|---|---|---|
RMSE | Peak Value | RMSE | Peak Value | |
Without control | 4.13 | 5.10 | 6.97 | 25.06 |
SMC | 2.29 | 2.83 | 1.71 | 16.87 |
ANFTSM | 2.10 | 2.69 | 0.57 | 16.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Zhang, F.; Zhang, Y.; Su, L.; Gong, G. Yaw Stability Research of the Distributed Drive Electric Bus by Adaptive Nonsingular Fast Terminal Sliding Mode Control. Machines 2022, 10, 969. https://doi.org/10.3390/machines10110969
Zhu H, Zhang F, Zhang Y, Su L, Gong G. Yaw Stability Research of the Distributed Drive Electric Bus by Adaptive Nonsingular Fast Terminal Sliding Mode Control. Machines. 2022; 10(11):969. https://doi.org/10.3390/machines10110969
Chicago/Turabian StyleZhu, Huimin, Feng Zhang, Yong Zhang, Liang Su, and Gang Gong. 2022. "Yaw Stability Research of the Distributed Drive Electric Bus by Adaptive Nonsingular Fast Terminal Sliding Mode Control" Machines 10, no. 11: 969. https://doi.org/10.3390/machines10110969
APA StyleZhu, H., Zhang, F., Zhang, Y., Su, L., & Gong, G. (2022). Yaw Stability Research of the Distributed Drive Electric Bus by Adaptive Nonsingular Fast Terminal Sliding Mode Control. Machines, 10(11), 969. https://doi.org/10.3390/machines10110969