Analytical Investigation on Load Sharing Performance of Planetary Gear Transmission under Loop Maneuver
Abstract
:1. Introduction
2. Kinematics Analysis of PGT under Loop Maneuver
2.1. System Coordinate System Settings
2.2. Kinematic Analysis
3. Dynamic Modeling of PGT
3.1. Substructure Modeling
3.2. Substructure Coupling
3.3. Internal Dynamic Excitations
4. Analysis of LSP under Airframe Loop Maneuver
4.1. Influence of Loop Maneuver on LSC
4.2. Influence of Working Conditions on LSC
4.3. Influence of Bearing Stiffness on LSC
4.4. Influence of Manufacturing Errors on LSC
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
a | absolute acceleration |
b | backlash |
e | error |
g | acceleration of gravity |
k | stiffness |
k1, k2 | number of meshing frequency cycles |
l1, l2, l3 | coordinates |
m | mass |
t | time |
a | absolute acceleration vector |
i, j, k | unit vectors of the coordinate axis |
r | radius vector |
v | velocity vector |
A | absolute acceleration |
E | projection of the manufacturing error of gear on meshing line |
C | damping matrix |
F | force vector |
G | gravity vector |
K | stiffness matrix |
M | component node |
M | mass matrix |
N | number of planets |
T | external torque |
W | tooth width |
X | position vectors matrix |
R | radius |
x, y, z, ξ, η | translational displacements |
α | pressure angle |
β | helix angle |
γ | initial phase angle of the manufacturing error of each gear |
φ | planet position angle |
θ | rotational displacement |
ω | angular velocity of planet carrier |
loop angular velocity | |
loop angular acceleration | |
Subscripts | |
a | additional, external non-inertial system |
b | bearing |
d | loop maneuver |
c | planet carrier |
gapmin | minimum gap |
gapmax | maximum gap |
n | internal non-inertial system |
p | planet gear |
pp | pin |
r | ring gear |
rp | internal meshing |
s | sun gear |
sp | external meshing |
x | casing |
B | bolt |
Superscript | |
T | matrix transpose |
References
- Hou, S.; Wei, J.; Zhang, A.; Lim, T.C.; Zhang, C. Study of Dynamic Model of Helical/Herringbone Planetary Gear System With Friction Excitation. J. Comput. Nonlinear Dyn. 2018, 13, 121007. [Google Scholar] [CrossRef]
- Bodas, A.; Kahraman, A. Influence of Carrier and Gear Manufacturing Errors on the Static Load Sharing Behavior of Planetary Gear Sets. JSME Int. J. 2005, 47, 908–915. [Google Scholar] [CrossRef] [Green Version]
- Singh, A. Load sharing behavior in epicyclic gears: Physical explanation and generalized formulation. Mech. Mach. Theory 2009, 45, 511–530. [Google Scholar] [CrossRef]
- Singh, A. Epicyclic Load Sharing Map-Development and validation. Mech. Mach. Theory 2011, 46, 632–646. [Google Scholar] [CrossRef]
- Sheng, D.-P.; Zhu, R.-P.; Jin, G.-H.; Lu, F.-X.; Bao, H.-Y. Dynamic load sharing characteristics and sun gear radial orbits of double-row planetary gear train. J. Central South Univ. 2015, 22, 3806–3816. [Google Scholar] [CrossRef]
- Cooley, C.G.; Parker, R. Mechanical stability of high-speed planetary gears. Int. J. Mech. Sci. 2013, 69, 59–71. [Google Scholar] [CrossRef]
- Qiu, X.; Han, Q.; Chu, F. Load-sharing characteristics of planetary gear transmission in horizontal axis wind turbines. Mech. Mach. Theory 2015, 92, 391–406. [Google Scholar] [CrossRef]
- Park, Y.-J.; Kim, J.-G.; Lee, G.-H.; Shim, S.B. Load sharing and distributed on the gear flank of wind turbine planetary gearbox. J. Mech. Sci. Technol. 2015, 29, 309–316. [Google Scholar] [CrossRef]
- Zhang, C.; Wei, J.; Wang, F.; Hou, S.; Zhang, A.; Lim, T.C. Dynamic model and load sharing performance of planetary gear system with journal bearing. Mech. Mach. Theory 2020, 151, 103898. [Google Scholar] [CrossRef]
- Molaie, M.; Deylaghian, S.; Iarriccio, G.; Samani, F.S.; Zippo, A.; Pellicano, F. Planet Load-Sharing and Phasing. Machines 2022, 10, 634. [Google Scholar] [CrossRef]
- Gu, X.; Velex, P. A dynamic model to study the influence of planet position errors in planetary gears. J. Sound Vib. 2012, 331, 4554–4574. [Google Scholar] [CrossRef]
- Gu, X.; Velex, P. On the dynamic simulation of eccentricity errors in planetary gears. Mech. Mach. Theory 2012, 61, 14–29. [Google Scholar] [CrossRef]
- Ren, F.; Qin, D.; Lim, T.C.; Lyu, S. Study on dynamic characteristics and load sharing of a herringbone planetary gear with manufacturing errors. Int. J. Precis. Eng. Manuf. 2014, 15, 1925–1934. [Google Scholar] [CrossRef]
- Han, J.; Liu, Y.; Liang, L.; Zhao, Y.; Zhang, H. Dynamic Analysis of a Fault Planetary Gear System under Nonlinear Parameter Excitation. Shock Vib. 2021, 2021, 1–17. [Google Scholar] [CrossRef]
- Singh, A. Application of a System Level Model to Study the Planetary Load Sharing Behavior. J. Mech. Des. 2004, 127, 469–476. [Google Scholar] [CrossRef]
- Singh, A.; Kahraman, A.; Ligata, H. Internal Gear Strains and Load Sharing in Planetary Transmissions: Model and Experiments. J. Mech. Des. 2008, 130, 072602. [Google Scholar] [CrossRef]
- Ligata, H.; Kahraman, A.; Singh, A. An Experimental Study of the Influence of Manufacturing Errors on the Planetary Gear Stresses and Planet Load Sharing. J. Mech. Des. 2008, 130, 137–139. [Google Scholar] [CrossRef]
- Ge, H.; Shen, Y.; Zhu, Y.; Xiong, Y.; Yuan, B.; Fang, Z. Simulation and experimental test of load-sharing behavior of planetary gear train with flexible ring gear. J. Mech. Sci. Technol. 2021, 35, 4875–4888. [Google Scholar] [CrossRef]
- Li, H.F.; Fu, B.B.; Fu, D. Research on the Load Sharing Technique and Experimental Validation of NGW Type Planetary Gear Train. Appl. Mech. Mater. 2011, 86, 243–246. [Google Scholar] [CrossRef]
- Qiu, X.; Han, Q.; Chu, F. Dynamic modeling and analysis of the planetary gear under pitching base motion. Int. J. Mech. Sci. 2018, 141, 31–45. [Google Scholar] [CrossRef]
- Tan, J.; Zhu, C.; Song, C.; Li, Y.; Xu, X. Dynamic modeling and analysis of wind turbine drivetrain considering platform motion. Mech. Mach. Theory 2019, 140, 781–808. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, A.; Shi, L.; Qin, D.; Lim, T.C. Modeling and Dynamic Characteristics of Planetary Gear Transmission in Non-inertial System of Aerospace Environment. J. Mech. Des. 2020, 142, 031103. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, A.; Qin, D.; Lim, T.C.; Shu, R.; Lin, X.; Meng, F. A coupling dynamics analysis method for a multistage planetary gear system. Mech. Mach. Theory 2017, 110, 27–49. [Google Scholar] [CrossRef]
- Han, Q.; Zhao, J.; Chu, F. Dynamic analysis of a geared rotor system considering a slant crack on the shaft. J. Sound Vib. 2012, 331, 5803–5823. [Google Scholar] [CrossRef]
- He, C.; Chang, L.; Liu, L. Dynamic response analysis of planetary gear transmission system coupled with case vibration. J. South China Univ. Technol. Nat. Sci. 2015, 43, 128–134. (In Chinese) [Google Scholar]
- Chen, Z.; Shao, Y. Dynamic Features of a Planetary Gear System With Tooth Crack Under Different Sizes and Inclination Angles. ASME J. Vib. Acoust. 2013, 135, 031004. [Google Scholar] [CrossRef]
- Mo, S.; Zhang, T.; Jin, G.; Feng, Z.; Gong, J.; Zhu, S. Influence mechanism of multi-coupling error on the load sharing characteristics of herringbone gear planetary transmission system. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 2019, 233, 795–816. [Google Scholar] [CrossRef]
Material | Density (kg·m−3) | Young’s Modulus (GPa) | Poisson’s Ratio | |
---|---|---|---|---|
Upper casing | Cast aluminum | 2700 | 70 | 0.34 |
Lower casing | Cast magnesium | 1770 | 42.5 | 0.275 |
Bearing | kxx (N∙m−1) | kyy (N∙m−1) | kzz (N∙m−1) |
---|---|---|---|
Sun bearing (kbs) | 4.08 × 107 | 4.39 × 107 | 3.46 × 107 |
Planet bearing (kbp) | 3.45 × 108 | 3.07 × 108 | 1.25 × 105 |
Carrier bearing 1 (kbc1) | 1.89 × 107 | 1.70 × 107 | 2.37 × 105 |
Carrier bearing 2 (kbc2) | 1.28 × 107 | 1.10 × 107 | 1.10 × 104 |
Category | Symbol | Sun Gear | Planet Gear | Ring Gear |
---|---|---|---|---|
The number of planets | N | 4 | ||
Module (mm) | m | 2.5 | ||
Pressure angle (°) | α | 25 | ||
Tooth number | z | 34 | 36 | 106 |
Helix angle (°) | β | 0 | ||
Tooth width (mm) | W | 52.5 | 44.5 | 26 |
Modification coefficient | X* | 0.0185 | −0.0185 | −0.0185 |
Rated input speed (r/min) | 4000 | |||
Load torque (Nm) | 2800 |
Category | External Meshing | Internal Meshing | |
---|---|---|---|
Meshing stiffness | Mean value (N/m) | 1.006 × 108 | 8.905 × 107 |
Amplitude (N/m) | 2.437 × 107 | 2.514 × 107 | |
Backlash | 2bgapmin (μm) | 119.2 | 119.2 |
2bgapmax (μm) | 222.3 | 229.0 | |
Tooth profile error | Total cumulative pitch error (μm) | 19.45 | 23.85 |
Single-tooth tangential deviation (μm) | 13.25 | 13.3 |
Component | Sun Gear | Planet Gear | Ring Gear | Carrier | |
---|---|---|---|---|---|
Rotating speed/r/min | 4000 | - | 0 | 971.43 | |
Shaft frequency/Hz | absolute | fs1 = 66.67 | - | 0 | fs2 = 16.19 |
relative | frs1 = 50.48 | frs3 = 47.67 | frs4 = 16.19 | 0 | |
Mesh frequency/Hz | 1716.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, B.; Zhang, A.; Cao, M.; Ye, J.; Wei, J. Analytical Investigation on Load Sharing Performance of Planetary Gear Transmission under Loop Maneuver. Machines 2022, 10, 1068. https://doi.org/10.3390/machines10111068
Peng B, Zhang A, Cao M, Ye J, Wei J. Analytical Investigation on Load Sharing Performance of Planetary Gear Transmission under Loop Maneuver. Machines. 2022; 10(11):1068. https://doi.org/10.3390/machines10111068
Chicago/Turabian StylePeng, Bin, Aiqiang Zhang, Miaofei Cao, Jinzong Ye, and Jing Wei. 2022. "Analytical Investigation on Load Sharing Performance of Planetary Gear Transmission under Loop Maneuver" Machines 10, no. 11: 1068. https://doi.org/10.3390/machines10111068
APA StylePeng, B., Zhang, A., Cao, M., Ye, J., & Wei, J. (2022). Analytical Investigation on Load Sharing Performance of Planetary Gear Transmission under Loop Maneuver. Machines, 10(11), 1068. https://doi.org/10.3390/machines10111068