Trending Topics in Research on Rehabilitation Robots during the Last Two Decades: A Bibliometric Analysis
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Tools
2.3. Methods
- (1)
- Time slicing: 2000–2019;
- (2)
- Years per slice: “1”;
- (3)
- Term source: title, abstract, author keywords, and keywords plus;
- (4)
- Node type: category, cited journal, reference, and keywords;
- (5)
- Selection criteria: the top 50 publications with the highest citation frequency in each time slice (top N = 50);
- (6)
- Pruning: pathfinder and pruning sliced networks (the functions provided by CiteSpace can reduce the number of connections while retaining the most prominent visualization).
3. Results
3.1. Trend of Publication Output
3.2. Subject Category Co-Occurrence Analysis
3.3. Journal Co-Citation Analysis
3.4. Document Co-Citation Analysis
4. Discussion
4.1. Cluster Discussion
4.1.1. Cluster #0: Narrative Review
4.1.2. Cluster #1: Spinal Cord Injury
4.1.3. Other Clusters
4.2. Publications with High Betweenness Centrality Ratios
4.3. Keyword Co-Word Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. World Report on Disability 2011; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- World Health Organization. The Global Burden of Disease: 2004 Update; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Maciejasz, P.; Eschweiler, J.; Gerlach-Hahn, K.; Jansen-Troy, A.; Leonhardt, S. A survey on robotic devices for upper limb rehabilitation. J. NeuroEng. Rehabil. 2014, 11, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vahdat, S.; Darainy, M.; Thiel, A.; Ostry, D.J. A Single Session of Robot-Controlled Proprioceptive Training Modulates Functional Connectivity of Sensory Motor Networks and Improves Reaching Accuracy in Chronic Stroke. Neurorehabilit. Neural Repair 2019, 33, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Reid, L.B.; Pagnozzi, A.M.; Fiori, S.; Boyd, R.N.; Dowson, N.; Rose, S.E. Measuring neuroplasticity associated with cerebral palsy rehabilitation: An MRI based power analysis. Int. J. Dev. Neurosci. 2017, 58, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, C.Y.; Ko, J.; Kim, H.J.; Lim, D. New wearable exoskeleton for gait rehabilitation assistance integrated with mobility system. Int. J. Precis. Eng. Manuf. 2016, 17, 957–964. [Google Scholar] [CrossRef]
- Li, N.; Yang, T.; Yu, P.; Chang, J.L.; Zhao, L.; Zhao, X.G.; Elhajj, I.H.; Xi, N.; Liu, L.Q. Bio-inspired upper limb soft exoskeleton to reduce stroke-induced complications. Bioinspir. Biomim. 2018, 13, 066001. [Google Scholar] [CrossRef]
- Li, G.L.; Schultz, A.E.; Kuiken, T.A. Quantifying Pattern Recognition-Based Myoelectric Control of Multifunctional Transradial Prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Chiang, M.H.; Lin, H.T.; Hou, C.L. Development of a Stereo Vision Measurement System for a 3D Three-Axial Pneumatic Parallel Mechanism Robot Arm. Sensors 2011, 11, 2257–2281. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, J.; Ovur, S.; Chen, Z.; Li, X.; Hu, Z.; Hu, Y. Novel Design and Adaptive Fuzzy Control of a Lower-Limb Elderly Rehabilitation. Electronics 2020, 9, 343. [Google Scholar] [CrossRef] [Green Version]
- Niswander, W.; Wang, W.; Kontson, K. Optimization of IMU Sensor Placement for the Measurement of Lower Limb Joint Kinematics. Sensors 2020, 20, 5993. [Google Scholar] [CrossRef]
- Wang, L.N.; Liu, J.B.; Lan, J. Feature Evaluation of Upper Limb Exercise Rehabilitation Interactive System Based on Kinect. IEEE Access 2019, 7, 165985–165996. [Google Scholar] [CrossRef]
- Ang, K.K.; Chua, K.S.G.; Phua, K.S.; Wang, C.; Chin, Z.Y.; Kuah, C.W.K.; Low, W.; Guan, C. A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke. Clin. EEG Neurosci. 2015, 46, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Mekki, M.; Delgado, A.D.; Fry, A.; Putrino, D.; Huang, V. Robotic Rehabilitation and Spinal Cord Injury: A Narrative Review. Neurotherapeutics 2018, 15, 604–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhn, T.S. The Structure of Scientific Revolutions; University of Chicago Press: Chicago, IL, USA, 1962. [Google Scholar]
- Shneider, A.M. Four stages of a scientific discipline; four types of scientist. Trends Biochem. Sci. 2009, 34, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.M.; Chen, Y.; Horowitz, M.; Hou, H.Y.; Liu, Z.Y.; Pellegrino, D. Towards an explanatory and computational theory of scientific discovery. J. Informetr. 2009, 3, 191–209. [Google Scholar] [CrossRef] [Green Version]
- Abercrombie, R.K.; Udoeyop, A.W.; Schlicher, B.G. A study of scientometric methods to identify emerging technologies via modeling of milestones. Scientometrics 2012, 91, 327–342. [Google Scholar] [CrossRef]
- Chen, C.M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.; Jeong, B.; Lee, W.H.; Kim, J. Tracing the Evolving Trends in Electronic Skin (e-Skin) Technology Using Growth Curve and Technology Position-Based Patent Bibliometrics. IEEE Access 2018, 6, 26530–26542. [Google Scholar] [CrossRef]
- Khitous, F.; Strozzi, F.; Urbinati, A.; Alberti, F. A Systematic Literature Network Analysis of Existing Themes and Emerging Research Trends in Circular Economy. Sustainability 2020, 12, 1633. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.H.; Zhang, R.T.; Zhao, H.M.; Feng, J.Y. A Bibliometric Analysis of the Development of ICD-11 in Medical Informatics. J. Healthc. Eng. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Swanson, D.R. Undiscovered Public Knowledge. Libr. Q. 1986, 56, 103–118. [Google Scholar] [CrossRef]
- Chen, C. Turning Points: The Nature of Creativity; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Chen, C.M.; Ibekwe-SanJuan, F.; Hou, J.H. The Structure and Dynamics of Cocitation Clusters: A Multiple-Perspective Cocitation Analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1386–1409. [Google Scholar] [CrossRef] [Green Version]
- Ibekwe-SanJuan, F. Information Science in the web era: A term-based approach to domain mapping. Proc. Am. Soc. Inf. Sci. Technol. 2009, 46, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Gong, R.; Xue, J.; Zhao, L.; Zolotova, O.; Ji, X.; Xu, Y. A Bibliometric Analysis of Green Supply Chain Management Based on the Web of Science (WOS) Platform. Sustainability 2019, 11, 3459. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, M.-H.; Ho, Y.-S. Trends in research on global climate change: A Science Citation Index Expanded-based analysis. Glob. Planet. Chang. 2011, 77, 13–20. [Google Scholar] [CrossRef]
- Chen, C. Science Mapping: A Systematic Review of the Literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Kleinberg, J. Bursty and hierarchical structure in streams. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, AB, Canada, 23–26 July 2002; pp. 91–101. [Google Scholar]
- Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Price, D.J. Networks of Scientific Papers. Science 1965, 149, 510–515. [Google Scholar] [CrossRef]
- Leydesdorff, L.; Vaughan, L. Co-occurrence matrices and their applications in information science: Extending ACA to the Web environment. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 1616–1628. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Thijs, B.; Glanzel, W. Characteristics of international collaboration in sport sciences publications and its influence on citation impact. Scientometrics 2015, 105, 843–862. [Google Scholar] [CrossRef] [Green Version]
- Callon, M.; Courtial, J.P.; Laville, F. Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics 1991, 22, 155–205. [Google Scholar] [CrossRef]
- Chen, C. Hindsight, insight, and foresight: A multi-level structural variation approach to the study of a scientific field. Technol. Anal. Strateg. Manag. 2013, 25, 619–640. [Google Scholar] [CrossRef]
- Brandes, U. A faster algorithm for betweenness centrality. J. Math. Sociol. 2001, 25, 163–177. [Google Scholar] [CrossRef]
- Freeman, L. A Set of Measures of Centrality Based on Betweenness. Sociometry 1977, 40, 35–41. [Google Scholar] [CrossRef]
- Oliver, P.T. Citation indexing for studying science. Nature 1970, 227, 870. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Leydesdorff, L. Patterns of Connections and Movements in Dual-Map Overlays: A New Method of Publication Portfolio Analysis. J. Am. Soc. Inf. Sci. Technol. 2014, 65, 334–351. [Google Scholar] [CrossRef] [Green Version]
- Salton, G.; Buckley, C. Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 1988, 24, 513–523. [Google Scholar] [CrossRef] [Green Version]
- Dunning, T. Accurate methods for the statistics of surprise and coincidence. Comput. Linguist. 1993, 19, 61–74. [Google Scholar]
- Esquenazi, A.; Talaty, M.; Packel, A.; Saulino, M. The ReWalk Powered Exoskeleton to Restore Ambulatory Function to Individuals with Thoracic-Level Motor-Complete Spinal Cord Injury. Am. J. Phys. Med. Rehabil. 2012, 91, 911–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz, I.; Gil, J.J.; Sánchez, E. Lower-Limb Robotic Rehabilitation: Literature Review and Challenges. J. Robot. 2011, 2011, 759764. [Google Scholar] [CrossRef] [Green Version]
- Dollar, A.M.; Herr, H. Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art. IEEE Trans. Robot. 2008, 24, 144–158. [Google Scholar] [CrossRef]
- Heo, P.; Gu, G.M.; Lee, S.-J.; Rhee, K.; Kim, J. Current Hand Exoskeleton Technologies for Rehabilitation and Assistive Engineering. Int. J. Precis. Eng. Manuf. 2012, 13, 807–824. [Google Scholar] [CrossRef]
- Polygerinos, P.; Wang, Z.; Galloway, K.C.; Wood, R.J.; Walsh, C.J. Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 2015, 73, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Meng, W.; Liu, Q.; Zhou, Z.; Ai, Q.; Sheng, B.; Xie, S. Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics 2015, 31, 132–145. [Google Scholar] [CrossRef]
- Kiguchi, K.; Hayashi, Y. An EMG-Based Control for an Upper-Limb Power-Assist Exoskeleton Robot. IEEE Trans. Syst. Man Cybern. Part B-Cybern. 2012, 42, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Cempini, M.; Oddo, C.M.; Vitiello, N. Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robot. Auton. Syst. 2015, 64, 120–136. [Google Scholar] [CrossRef]
- Tucker, M.R.; Olivier, J.; Pagel, A.; Bleuler, H.; Bouri, M.; Lambercy, O.; Millan, J.d.R.; Riener, R.; Vallery, H.; Gassert, R. Control strategies for active lower extremity prosthetics and orthotics: A review. J. NeuroEng. Rehabil. 2015, 12, 1. [Google Scholar] [CrossRef] [Green Version]
- Naros, G.; Gharabaghi, A. Reinforcement learning of self-regulated beta-oscillations for motor restoration in chronic stroke. Front. Hum. Neurosci. 2015, 9, 391. [Google Scholar] [CrossRef] [Green Version]
- Lo, A.C.; Guarino, P.D.; Richards, L.G.; Haselkorn, J.K.; Wittenberg, G.F.; Federman, D.G.; Ringer, R.J.; Wagner, T.H.; Krebs, H.I.; Volpe, B.T.; et al. Robot-Assisted Therapy for Long-Term Upper-Limb Impairment after Stroke. N. Engl. J. Med. 2010, 362, 1772–1783. [Google Scholar] [CrossRef] [Green Version]
- Langhorne, P.; Bernhardt, J.; Kwakkel, G. Stroke rehabilitation. Lancet 2011, 377, 1693–1702. [Google Scholar] [CrossRef]
- Lo, H.S.; Xie, S.Q. Exoskeleton robots for upper-limb rehabilitation: State of the art and future prospects. Med. Eng. Phys. 2012, 34, 261–268. [Google Scholar] [CrossRef]
- Kwakkel, G.; Kollen, B.J.; Krebs, H.I. Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review. Neurorehabilit. Neural Repair 2008, 22, 111–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraro, M.; Palazzolo, J.J.; Krol, J.; Krebs, H.I.; Hogan, N.; Volpe, B.T. Robot-aided sensorimotor arm training improves outcome in patients with chronic stroke. Neurology 2003, 61, 1604–1607. [Google Scholar] [CrossRef] [PubMed]
- Marchal-Crespo, L.; Reinkensmeyer, D.J. Review of control strategies for robotic movement training after neurologic injury. J. NeuroEng. Rehabil. 2009, 6, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hesse, S.; Schulte-Tigges, G.; Konrad, M.; Bardeleben, A.; Werner, C. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch. Phys. Med. Rehabil. 2003, 84, 915–920. [Google Scholar] [CrossRef]
- Volpe, B.T.; Lynch, D.; Rykman-Berland, A.; Ferraro, M.; Galgano, M.; Hogan, N.; Krebs, H.I. Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke. Neurorehabilit. Neural Repair 2008, 22, 305–310. [Google Scholar] [CrossRef] [Green Version]
- Lum, P.S.; Burgar, C.G.; Shor, P.C.; Majmundar, M.; Van der Loos, M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 2002, 83, 952–959. [Google Scholar] [CrossRef]
- Colombo, G.; Joerg, M.; Schreier, R.; Dietz, V. Treadmill training of paraplegic patients using a robotic orthosis. J. Rehabil. Res. Dev. 2000, 37, 693–700. [Google Scholar]
Frequency | Burst | Centrality | Subject Category |
---|---|---|---|
1346 | 0 | 0.68 | Engineering |
1022 | 11.16 | 0.11 | Rehabilitation |
921 | 0 | 0.26 | Neurosciences and neurology |
791 | 0 | 0.08 | Engineering, biomedical |
639 | 0 | 0.14 | Neurosciences |
605 | 8.64 | 0.01 | Robotics |
401 | 12.51 | 0.12 | Computer science |
373 | 9.35 | 0.06 | Clinical neurology |
325 | 0 | 0.02 | Automation and control systems |
293 | 0 | 0.04 | Engineering, electrical and electronic |
234 | 0 | 0.03 | Engineering, mechanical |
214 | 15.26 | 0.02 | Computer science, artificial intelligence |
204 | 12.52 | 0.01 | Sport sciences |
116 | 0 | 0.01 | Instruments and instrumentation |
93 | 0 | 0 | Engineering, manufacturing |
91 | 0 | 0.02 | Science and technology—other topics |
90 | 0 | 0.03 | Computer science, information systems |
83 | 9.88 | 0 | Medical informatics |
81 | 0 | 0.06 | Chemistry |
77 | 0 | 0 | Multidisciplinary sciences |
Frequency | Burst | Centrality | Sigma | Subject Category | WOS Subject Categories |
---|---|---|---|---|---|
1726 | 0 | 0.04 | 1 | J. NeuroEng. Rehabil. | Rehabilitation/neurosciences/engineering, biomedical |
1722 | 0 | 0.09 | 1 | IEEE Trans. Neur. Syst. Rehabil. Eng. | Rehabilitation/engineering, biomedical |
1651 | 0 | 0.05 | 1 | Arch. Phys. Med. Rehabil. | Rehabilitation/sport sciences |
1521 | 0 | 0.01 | 1 | J. Rehabil. Res. Dev. | Rehabilitation/rehabilitation |
1481 | 0 | 0.05 | 1 | Neurorehab. Neural Repair | Rehabilitation/clinical neurology |
1331 | 0 | 0.03 | 1 | Stroke | Peripheral vascular disease/clinical neurology |
1072 | 0 | 0.03 | 1 | Phys. Ther. | Rehabilitation/orthopedics |
820 | 0 | 0.05 | 1 | IEEE Int. Conf. Robot. | / |
812 | 0 | 0.09 | 1 | J. Neurophysiol. | Neurosciences/physiology |
805 | 0 | 0.03 | 1 | Int. Conf. Rehabil. Robot. | / |
786 | 3.57 | 0.10 | 1.43 | Brain | Clinical neurology/neurosciences |
776 | 0 | 0.04 | 1 | Clin. Rehabil. | Rehabilitation |
774 | 5.73 | 0.06 | 1.43 | Exp. Brain Res. | Neurosciences |
764 | 0 | 0.13 | 1 | IEEE Trans. Bio-Med. Eng. | Engineering, biomedical |
739 | 0 | 0.04 | 1 | IEEE-ASME Trans. Mech. | Automation and control systems/engineering, electrical and electronic/engineering, manufacturing/engineering, mechanical |
Cluster ID | Size | Silhouette | Year | From | To | LLR |
---|---|---|---|---|---|---|
0 | 90 | 0.809 | 2012 | 2008 | 2018 | Narrative review (466.3, 1.0 × 10−4); brain–machine interface (416.88, 1.0 × 10−4); walking assistance (388.21, 1.0 × 10−4); |
1 | 87 | 0.793 | 2011 | 2002 | 2017 | Spinal cord injury (306.13, 1.0 × 10−4); gait rehabilitation (299.64, 1.0 × 10−4); stroke rehabilitation (284.17, 1.0 × 10−4); |
2 | 83 | 0.677 | 2003 | 1995 | 2009 | Universal haptic drive (196.71, 1.0 × 10−4); energy recycling (191.57, 1.0 × 10−4); additional design feature (191.57, 1.0 × 10−4); |
3 | 64 | 0.804 | 2007 | 2003 | 2015 | Robot-assisted treadmill therapy (516.58, 1.0 × 10−4); robot-assisted gait training (328.7, 1.0 × 10−4); robotic gait training (250.31, 1.0 × 10−4); |
4 | 44 | 0.883 | 2001 | 1995 | 2006 | Treadmill training (121.96, 1.0 × 10−4); following motor (121.96, 1.0 × 10−4); automated locomotor training (111.32, 1.0 × 10−4); |
5 | 43 | 0.818 | 1999 | 1992 | 2004 | Increasing productivity (74.63, 1.0 × 10−4); robot-aided neurorehabilitation (74.63, 1.0 × 10−4); evidence-based arm rehabilitation (61.47, 1.0 × 10−4); |
7 | 25 | 0.960 | 2000 | 1996 | 2005 | Custom-designed haptic training (62.2, 1.0 × 10−4); restoring reaching ability (62.2, 1.0 × 10−4); post-stroke hemiparesis (62.2, 1.0 × 10−4); |
9 | 17 | 0.971 | 1998 | 1995 | 2004 | Physical treatment strategies (31.23, 1.0 × 10−4); post-stroke motor dysfunction (31.23, 1.0 × 10−4); new therapy (15.36, 1.0 × 10−4); |
10 | 16 | 0.944 | 1998 | 1994 | 2002 | Arm movement therapy (30.68, 1.0 × 10−4); robot assistance (30.68, 1.0 × 10−4); following stroke (28.96, 1.0 × 10−4); |
12 | 9 | 0.946 | 1997 | 1993 | 2001 | Rehabilitation robotics (12.66, 0.001); chronic stroke (0.04, 1.0); stroke rehabilitation (0.02, 1.0); |
Frequency | Burst | Centrality | Sigma | Author | Year | Source |
---|---|---|---|---|---|---|
77 | 23.25 | 0.03 | 1.94 | Esquenazi, A. [43] | 2012 | Am. J. Phys. Med. Rehabil. (American Journal of Physical Medicine and Rehabilitation) |
67 | 20.17 | 0.03 | 1.85 | Diaz, I. [44] | 2011 | J. Robot. (Journal of Robotics) |
56 | 15.79 | 0.01 | 1.12 | Dollar, A.M. [45] | 2008 | IEEE Trans. Robot. (IEEE Transactions on Robotics) |
50 | 18.09 | 0.03 | 1.58 | Heo, P. [46] | 2012 | Int. J. Precis. Eng. Man. (International Journal of Precision Engineering and Manufacturing) |
50 | 18.09 | 0.04 | 2.15 | Ramos-Murguialday, A. | 2013 | Ann. Neurol. (Annals of Neurology) |
50 | 17.76 | 0.02 | 1.41 | Polygerinos, P. [47] | 2015 | Robot. Auton. Syst. (Robotics and Autonomous Systems) |
42 | 18.28 | 0 | 1.04 | Meng, W. [48] | 2015 | Mechatronics |
41 | 14.55 | 0.03 | 1.56 | Kiguchi, K. [49] | 2012 | IEEE Trans. Syst. Man Cybern. Part B (IEEE Transactions on Systems, Man, and Cybernetics, Part B) |
37 | 16.09 | 0.01 | 1.09 | Zeilig, G. | 2012 | J. Spinal. Cord. Med. (Journal of Spinal Cord Medicine) |
36 | 13.00 | 0.03 | 1.52 | Belda-Lois, J.M. | 2011 | J. NeuroEng. Rehabil. (Journal of NeuroEngineering and Rehabilitation) |
36 | 15.66 | 0.01 | 1.15 | Yan, T.F. [50] | 2015 | Robot. Auton. Syst. (Robotics and Autonomous Systems) |
35 | 15.09 | 0 | 1.05 | Jamwal, P.K. | 2014 | IEEE-ASME Trans. Mech. (IEEE/ASME Transactions on Mechatronics) |
35 | 15.22 | 0 | 1.03 | Tucker, M.R. [51] | 2015 | J. NeuroEng. Rehabil. (Journal of NeuroEngineering and Rehabilitation) |
33 | 0 | 0.05 | 1 | Vitiello, N. | 2013 | IEEE Trans. Robot. (IEEE Transactions on Robotics) |
32 | 11.55 | 0.01 | 1.07 | Pennycott, A. | 2012 | J. NeuroEng. Rehabil. (Journal of NeuroEngineering and Rehabilitation) |
32 | 0 | 0 | 1 | Mehrholz, J. | 2017 | Cochrane Database Syst. Rev. (Cochrane Database of Systematic Reviews) |
31 | 9.44 | 0.01 | 1.07 | Roy, A. | 2009 | IEEE Trans. Robot. (IEEE Transactions on Robotics) |
30 | 13.04 | 0.03 | 1.4 | Chen Gong | 2013 | Crit. Rev. Biomed. Eng. (Critical Reviews in Biomedical Engineering) |
30 | 13.04 | 0.01 | 1.11 | Kawamoto, H. | 2013 | BMC Neurol. (BMC Neurology) |
28 | 10.69 | 0.01 | 1.06 | Dobkin, B.H. | 2012 | Neurorehab. Neural Repair (Neurorehabilitation and Neural Repair) |
Coverage | GCS | LCS | Bibliography |
---|---|---|---|
11 | 150 | 1 | Ang, K.K.; Chua, K.S.G.; Phua, K.S.; Wang, C.; Chin, Z.Y.; Kuah, C.W.K.; Low, W.; Guan, C. A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clin. EEG Neurosci. 2015, 46, 310–320. https://doi.org/10.1177/1550059414522229. |
9 | 39 | 1 | Naros, G.; Gharabaghi, A. Reinforcement learning of self-regulated beta-oscillations for motor restoration in chronic stroke. Front. Hum. Neurosci. 2015, 9, 391. https://doi.org/10.3389/fnhum.2015.00391. |
9 | 43 | 1 | Ang, K.K.; Guan, C. Brain–computer interface for neurorehabilitation of upper limb after stroke. Proc. IEEE 2015, 103, 944–953. https://doi.org/10.1109/JPROC.2015.2415800. |
9 | 102 | 1 | Soekadar, S.R.; Birbaumer, N.; Slutzky, M.W.; Cohen, L.G. Brain–machine interfaces in neurorehabilitation of stroke. Neurobiol. Dis. 2015, 83, 172–179. https://doi.org/10.1016/j.nbd.2014.11.025. |
8 | 40 | 1 | Brauchle, D.; Vukelić, M.; Bauer, R.; Gharabaghi, A. Brain-state-dependent robotic reaching movement with a multi-joint arm exoskeleton: Combining brain–machine interfacing and robotic rehabilitation. Front. Hum. Neurosci. 2015, 9, 564. https://doi.org/10.3389/fnhum.2015.00564. |
8 | 21 | 1 | García-Cossio, E.; Severens, M.; Nienhuis, B.; Duysens, J.; Desain, P.; Keijsers, N.; Farquhar, J. Decoding sensorimotor rhythms during robotic-assisted treadmill walking for brain–computer interface (BCI) applications. PLoS ONE 2015, 10, e0137910. https://doi.org/10.1371/journal.pone.0137910. |
8 | 29 | 1 | Yong, X.; Menon, C. EEG classification of different imaginary movements within the same limb. PLoS ONE 2015, 10, e0121896. https://doi.org/10.1371/journal.pone.0121896. |
8 | 20 | 1 | Ramos-Murguialday, A.; García-Cossio, E.; Walter, A.; Cho, W.; Broetz, D.; Bogdan, M.; Cohen, L.G.; Birbaumer, N. Decoding upper-limb residual muscle activity in severe chronic stroke. Ann. Clin. Transl. Neurol. 2015, 2, 1–11. https://doi.org/10.1002/acn3.122. |
6 | 40 | 1 | Hussain, S.; Xie, S.Q.; Jamwal, P.K. Robust nonlinear control of an intrinsically compliant robotic gait training orthosis. IEEE Trans. Syst. Man Cybern. -Syst. 2012, 43, 655–665. https://doi.org/10.1109/TSMCA.2012.2207111. |
6 | 50 | 1 | Ang, K.K.; Guan, C.; Phua, K.S.; Wang, C.; Zhao, L.; Teo, W.P.; Chen, C.; Ng, Y.S.; Chew, E. Facilitating effects of transcranial direct current stimulation on motor imagery brain–computer interface with robotic feedback for stroke rehabilitation. Arch. Phys. Med. Rehabil. 2015, 96, S79–S87 https://doi.org/10.1016/j.apmr.2014.08.008. |
Frequency | Burst | Centrality | Sigma | Author | Year | Source |
---|---|---|---|---|---|---|
270 | 23.70 | 0.08 | 6.36 | Lo, A.C. [53] | 2010 | N. Engl. J. Med. |
262 | 43.85 | 0.03 | 3.42 | Kwakkel, G. [56] | 2008 | Neurorehab. Neural. Repair |
135 | 40.78 | 0.03 | 3.71 | Maciejasz, P. [3] | 2014 | J. NeuroEng. Rehabil. |
105 | 18.19 | 0.04 | 1.89 | Langhorne, P. [54] | 2011 | Lancet |
96 | 14.82 | 0.04 | 1.72 | Takahashi, C.D. | 2008 | Brain |
93 | 26.67 | 0.01 | 1.4 | Klamroth-Marganska, V. | 2014 | Lancet Neurol. |
87 | 18.79 | 0.02 | 1.36 | Norouzi-Gheidari, N. | 2012 | J. Rehabil. Res. Dev. |
80 | 12.56 | 0.04 | 1.67 | Huang, V.S. | 2009 | J. NeuroEng. Rehabil. |
75 | 21.18 | 0.04 | 2.45 | Wolf, S.L. | 2006 | JAMA J. Am. Med. Assoc. |
73 | 15.23 | 0.02 | 1.44 | Langhorne, P. | 2009 | Lancet Neurol. |
73 | 4.83 | 0.04 | 1.21 | Lo, H.S. [55] | 2012 | Med. Eng. Phys. |
61 | 18.67 | 0.01 | 1.26 | Mehrholz, J. | 2012 | Cochrane Database Syst. Rev. |
59 | 16.84 | 0.02 | 1.46 | Basteris, A. | 2014 | J. NeuroEng. Rehabil. |
57 | 9.27 | 0.04 | 1.5 | Housman, S.J. | 2009 | Neurorehab. Neural Repair |
55 | 14.12 | 0.11 | 4.12 | Volpe, B.T. | 2008 | Neurorehab. Neural Repair |
52 | 18.48 | 0.02 | 1.36 | Mehrholz, J. | 2015 | Cochrane Database Syst. Rev. |
51 | 0 | 0.02 | 1 | Veerbeek, J.M. | 2017 | Neurorehab. Neural. Repair |
50 | 16.90 | 0.02 | 1.39 | Chang, W.H. | 2013 | J. Stroke |
43 | 10.90 | 0 | 1.04 | Masiero, S. | 2011 | J. Rehabil. Res. Dev. |
42 | 7.86 | 0.02 | 1.2 | Bosecker, C. | 2010 | Neurorehab. Neural. Repair |
Frequency | Centrality | Sigma | Author | Year | Source | Cluster |
---|---|---|---|---|---|---|
55 | 0.14 | 12.37 | Ferraro, M. [57] | 2003 | Neurology | 2 |
140 | 0.13 | 40.13 | Marchal-Crespo, L. [58] | 2009 | J. NeuroEng. Rehabil. | 2 |
55 | 0.11 | 4.12 | Volpe, B.T. [60] | 2008 | Neurorehab. Neural Repair | 1 |
61 | 0.10 | 6.60 | Hesse, S. [59] | 2003 | Arch. Phys. Med. Rehabil. | 2 |
52 | 0.09 | 5.56 | Fasoli, S.E. | 2004 | Arch. Phys. Med. Rehabil. | 2 |
270 | 0.08 | 6.36 | Lo, A.C. [53] | 2010 | N. Engl. J. Med. | 1 |
101 | 0.08 | 17.16 | Lum, P.S. [61] | 2002 | Arch. Phys. Med. Rehabil. | 2 |
119 | 0.08 | 2.67 | Hidler, J. | 2009 | Neurorehab. Neural Repair | 3 |
16 | 0.08 | 1.78 | Colombo, G. [62] | 2001 | Spinal Cord. | 4 |
16 | 0.08 | 1.76 | Whitall, J. | 2000 | Stroke | 9 |
References | Year | Strength | Begin | End |
---|---|---|---|---|
Yan, T.F., 2015, Robot. Auton. Syst. | 2015 | 37.9735 | 2017 | 2019 |
Wang, S.Q., 2015, IEEE Trans. Neurol Sys. Rehabil. Eng. | 2015 | 26.9781 | 2017 | 2019 |
Tucker, M.R., 2015, J. NeuroEng. Rehabil. | 2015 | 25.6632 | 2017 | 2019 |
Polygerinos, P., 2015, Robot. Auton. Syst. | 2015 | 23.9115 | 2017 | 2019 |
Meng, W., 2015, Mechatronics | 2015 | 23.0363 | 2017 | 2019 |
Maciejasz, P., 2014, J. NeuroEng. Rehabil. | 2014 | 47.8446 | 2016 | 2019 |
Collins, S.H., 2015, Nature | 2015 | 26.5816 | 2016 | 2019 |
Zeilig, G., 2012, J. Spinal Cord Med. | 2012 | 23.5634 | 2016 | 2019 |
Kiguchi, K., 2012, IEEE Trans. Syst. Man Cybern. Part B | 2012 | 23.5634 | 2016 | 2019 |
Esquenazi, A., 2012, Am. J. Phys. Med. Rehabil. | 2012 | 41.795 | 2015 | 2019 |
Klamroth-Marganska, V., 2014, Lancet Neurol. | 2014 | 29.9453 | 2015 | 2019 |
Ramos-Murguialday, A., 2013, Ann. Neurol. | 2013 | 24.2579 | 2015 | 2019 |
Langhorne, P., 2011, Lancet | 2011 | 23.9969 | 2015 | 2019 |
Diaz, I., 2011, J. Robot. | 2011 | 23.9014 | 2015 | 2019 |
Lo, A.C., 2010, N. Engl. J. Med. | 2010 | 38.0828 | 2011 | 2019 |
Keywords | Year | Strength | Begin | End |
---|---|---|---|---|
Manipulator | 2000 | 12.8896 | 2016 | 2019 |
Brain–computer interface | 2000 | 10.8979 | 2017 | 2019 |
Balance | 2000 | 9.058 | 2017 | 2019 |
Gait rehabilitation | 2000 | 8.3232 | 2015 | 2019 |
Randomized controlled trial | 2000 | 6.4838 | 2014 | 2019 |
Orthosis | 2000 | 5.4585 | 2015 | 2019 |
Robotic rehabilitation | 2000 | 11.786 | 2016 | 2017 |
Human–robot interaction | 2000 | 10.396 | 2016 | 2017 |
Chronic stroke | 2000 | 9.3485 | 2014 | 2017 |
Impedance control | 2000 | 8.6506 | 2014 | 2017 |
Device | 2000 | 5.4634 | 2016 | 2017 |
Validity | 2000 | 10.7783 | 2015 | 2016 |
Modulation | 2000 | 8.9653 | 2015 | 2016 |
Proprioception | 2000 | 8.437 | 2015 | 2016 |
Functional electrical stimulation | 2000 | 7.8711 | 2014 | 2016 |
Lokomat | 2000 | 7.0776 | 2015 | 2016 |
Quality of life | 2000 | 6.7234 | 2015 | 2016 |
Motor function | 2000 | 6.05 | 2009 | 2016 |
Robot-assisted therapy | 2000 | 4.7467 | 2015 | 2016 |
Coordination | 2000 | 11.1387 | 2010 | 2015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, X.; Qiao, X.; Fan, Y. Trending Topics in Research on Rehabilitation Robots during the Last Two Decades: A Bibliometric Analysis. Machines 2022, 10, 1061. https://doi.org/10.3390/machines10111061
Zhang Y, Liu X, Qiao X, Fan Y. Trending Topics in Research on Rehabilitation Robots during the Last Two Decades: A Bibliometric Analysis. Machines. 2022; 10(11):1061. https://doi.org/10.3390/machines10111061
Chicago/Turabian StyleZhang, Ying, Xiaoyu Liu, Xiaofeng Qiao, and Yubo Fan. 2022. "Trending Topics in Research on Rehabilitation Robots during the Last Two Decades: A Bibliometric Analysis" Machines 10, no. 11: 1061. https://doi.org/10.3390/machines10111061
APA StyleZhang, Y., Liu, X., Qiao, X., & Fan, Y. (2022). Trending Topics in Research on Rehabilitation Robots during the Last Two Decades: A Bibliometric Analysis. Machines, 10(11), 1061. https://doi.org/10.3390/machines10111061