Ensemble-Based Semi-Supervised Learning for Milling Chatter Detection
Abstract
:1. Introduction
2. Modellings in Milling Chatter Detection
2.1. Motivation
2.2. Proposed Method
2.2.1. Multifractal Detrended Fluctuation Analysis
2.2.2. Ensemble-Based Semi-Supervised Learning
3. Framework of the Proposed Method for Chatter Detection
3.1. Feature Extraction and Selection
3.2. Model Parameters Training
4. Experimental Study
4.1. Experiment Setup and Data Acquisition
4.2. Signal Processing
4.3. Results and Analysis
4.4. Comparison and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, L.; Liu, C. Recent progress of chatter prediction, detection and suppression in milling. Mech. Syst. Signal Process. 2020, 143, 106840. [Google Scholar] [CrossRef]
- Huang, C.; Yang, W.A.; Cai, X.; Liu, W.; You, Y. An efficient third-order full-discretization method for prediction of regenerative chatter stability in milling. Shock Vib. 2020, 9071451. [Google Scholar] [CrossRef]
- Insperger, T.; Stépán, G. Semi-discretization method for delayed systems. Int. J. Numer. Methods Eng. 2002, 55, 503–518. [Google Scholar] [CrossRef]
- Ding, Y.; Zhu, L.; Zhang, X.; Ding, H. Stability analysis of milling via the differential quadrature method. J. Manuf. Sci. Eng. 2013, 135, 044502. [Google Scholar] [CrossRef]
- Pérez-Canales, D.; Vela-Martínez, L.; Jáuregui-Correa, J.C.; Alvarez-Ramirez, J. Analysis of the entropy randomness index for machining chatter detection. Int. J. Mach. Tools Manuf. 2012, 62, 39–45. [Google Scholar] [CrossRef]
- Tangjitsitcharoen, S.; Saksri, T.; Ratanakuakangwan, S. Advance in chatter detection in ball end milling process by utilizing wavelet transform. J. Intell. Manuf. 2015, 26, 485–499. [Google Scholar] [CrossRef]
- Thaler, T.; Potočnik, P.; Bric, I.; Govekar, E. Chatter detection in band sawing based on discriminant analysis of sound features. Appl. Acoust. 2014, 77, 114–121. [Google Scholar] [CrossRef]
- Griffin, J.M.; Chen, X. Multiple classification of the acoustic emission signals extracted during burn and chatter anomalies using genetic programming. Int. J. Adv. Manuf. Technol. 2009, 45, 1152–1168. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Q.; Li, B.; Mao, X.; Mao, K.; Peng, F. On-line chatter detection using servo motor current signal in turning. Sci. China Technol. Sci. 2011, 54, 3119–3129. [Google Scholar] [CrossRef]
- Kuljanic, E.; Sortino, M.; Totis, G. Multisensor approaches for chatter detection in milling. J. Sound Vib. 2008, 312, 672–693. [Google Scholar] [CrossRef]
- Patwari, M.A.U.; Amin, A.N.; Faris, W.F. Influence of chip serration frequency on chatter formation during end milling of Ti6Al4V. J. Manuf. Sci. Eng.-Trans. Asme 2011, 133, 011013. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Lei, Y.; He, Z. Chatter identification in end milling process using wavelet packets and Hilbert–Huang transform. Int. J. Mach. Tools Manuf. 2013, 69, 11–19. [Google Scholar] [CrossRef]
- Li, X.; Yao, Z.H.; Chen, Z.C. An effective EMD-based feature extraction method for boring chatter recognition. Appl. Mech. Mater. 2010, 34, 1058–1063. [Google Scholar] [CrossRef]
- Lamraoui, M.; Barakat, M.; Thomas, M.; Badaoui, M.E. Chatter detection in milling machines by neural network classification and feature selection. J. Vib. Control 2015, 21, 1251–1266. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Hou, L.; Wang, J.; Bu, X. An intelligent chatter detection method based on EEMD and feature selection with multi-channel vibration signals. Measurement 2018, 127, 356–365. [Google Scholar] [CrossRef]
- Zhou, J.H.; Pang, C.K.; Zhong, Z.W.; Lewis, F.L. Tool wear monitoring using acoustic emissions by dominant-feature identification. IEEE Trans. Instrum. Meas. 2010, 60, 547–559. [Google Scholar] [CrossRef]
- Huang, W.B.; Sun, F.C. Building feature space of extreme learning machine with sparse denoising stacked-autoencoder. Neurocomputing 2016, 174, 60–71. [Google Scholar]
- Sun, Z.; Sun, H. Stacked denoising autoencoder with density-grid based clustering method for detecting outlier of wind turbine components. IEEE Access 2019, 7, 13078–13091. [Google Scholar] [CrossRef]
- Dong, J.; Subrahmanyam, K.V.R.; Wong, Y.S.; Hong, G.S.; Mohanty, A.R. Bayesian-inference-based neural networks for tool wear estimation. Int. J. Adv. Manuf. Technol. 2006, 30, 797–807. [Google Scholar] [CrossRef]
- Tansel, I.N.; Wagiman, A.; Tziranis, A. Recognition of chatter with neural networks. Int. J. Mach. Tools Manuf. 1991, 31, 539–552. [Google Scholar] [CrossRef]
- Zhang, C.L.; Yue, X.; Jiang, Y.T.; Zheng, W. A hybrid approach of ANN and HMM for cutting chatter monitoring. Adv. Mater. Res. 2010, 97, 3225–3232. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, Y.; Zhou, H.; Li, D.; Liu, H.; Qiao, H.; Wang, X. Timely online chatter detection in end milling process. Mech. Syst. Signal Process. 2016, 75, 668–688. [Google Scholar] [CrossRef]
- Zhu, X.J. Semi-Supervised Learning Literature Survey; University of Wisconsin-Madison: Madison, WI, USA, 2005. [Google Scholar]
- Grzenda, M.; Bustillo, A. Semi-supervised roughness prediction with partly unlabeled vibration data streams. J. Intell. Manuf. 2019, 30, 933–945. [Google Scholar] [CrossRef]
- Razavi-Far, R.; Hallaji, E.; Farajzadeh-Zanjani, M.; Saif, M.; Kia, S.H.; Henao, H.; Capolino, G.A. Information fusion and semi-supervised deep learning scheme for diagnosing gear faults in induction machine systems. IEEE Trans. Ind. Electron. 2018, 66, 6331–6342. [Google Scholar] [CrossRef]
- Yu, K.; Ma, H.; Lin, T.R.; Li, X. A consistency regularization based semi-supervised learning approach for intelligent fault diagnosis of rolling bearing. Measurement 2020, 165, 107987. [Google Scholar] [CrossRef]
- Zhang, S.; Ye, F.; Wang, B.; Habetler, T.G. Semi-supervised bearing fault diagnosis and classification using variational autoencoder-based deep generative models. IEEE Sens. J. 2020, 21, 6476–6486. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhou, Z.H. Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2007, 37, 1088–1098. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Q.; Liu, X.; Zhu, X. Cryptocurrency momentum effect: DFA and MF-DFA analysis. Phys. A Stat. Mech. Appl. 2019, 526, 120847. [Google Scholar] [CrossRef]
- Ghil, M.; Benzi, R.; Parisi, G.; Fisica, S.I. Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics; Virginia University: Charlottesville, VI, USA, 1985. [Google Scholar]
- Zhang, M.L.; Zhou, Z.H. Exploiting unlabeled data to enhance ensemble diversity. Data Min. Knowl. Discov. 2013, 26, 98–129. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhou, H.; Ding, X.; Zhang, R. Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2011, 42, 513–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, S.; Sun, Y. Early chatter detection in thin-walled workpiece milling process based on multi-synchrosqueezing transform and feature selection. Mech. Syst. Signal Process. 2022, 169, 108622. [Google Scholar] [CrossRef]
- Lin, M.; Yan, S.X.; Zhao, G.; Wang, G. Multifractal detrended fluctuation analysis of interevent time series in a modified OFC model. Commun. Theor. Phys. 2013, 59, 1. [Google Scholar] [CrossRef]
- Wan, S.; Li, X.; Yin, Y.; Hong, J. Milling chatter detection by multi-feature fusion and Adaboost-SVM. Mech. Syst. Signal Process. 2021, 156, 107671. [Google Scholar] [CrossRef]
- Sener, B.; Gudelek, M.U.; Ozbayoglu, A.M.; Unver, H.O. A novel chatter detection method for milling using deep convolution neural networks. Measurement 2021, 182, 109689. [Google Scholar] [CrossRef]
- Dun, Y.; Zhu, L.; Yan, B.; Wang, S. A chatter detection method in milling of thin-walled TC4 alloy workpiece based on auto-encoding and hybrid clustering. Mech. Syst. Signal Process. 2021, 158, 107755. [Google Scholar] [CrossRef]
- Wang, R.; Song, Q.; Liu, Z.; Ma, H.; Gupta, M.K.; Liu, Z. A novel unsupervised machine learning-based method for chatter detection in the milling of thin-walled parts. Sensors 2021, 21, 5779. [Google Scholar] [CrossRef]
No. | Feature Name | Expression | No. | Feature Name | Expression |
---|---|---|---|---|---|
1 | Mean | 10 | Energy ratio | ||
2 | Standard deviation | 11 | Centre frequency | ||
3 | Root mean square | 12 | Variation in frequency | ||
4 | Peak-Peak | 13 | Frequency variance | ||
5 | Skewness | 14 | Mean of spectrum | ||
6 | Kurtosis | 15 | Peak of spectrum | ||
7 | Crest factor | 16 | Variance of spectrum | ||
8 | Clearance factor | 17 | Kurtosis of spectrum | ||
9 | Impact factor | 18 | Skewness of spectrum |
No. | Shape | Ns (r/min) | fd (mm/min) | ap (mm) | ar (mm) | C | No. | Shape | ns (r/min) | fd (mm/min) | ap (mm) | ar (mm) | C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | #1 | 4500 | 400 | 5 | 0.1 | +1 | 36 | #2 | 7200 | 550 | 3 | 0.2 | - |
2 | #1 | 4500 | 400 | 5 | 0.2 | +1 | 37 | #2 | 7200 | 550 | 3 | 0.3 | - |
3 | #1 | 4500 | 400 | 5 | 0.3 | +1 | 38 | #2 | 7200 | 700 | 3 | 0.3 | - |
4 | #1 | 4500 | 400 | 5 | 0.5 | +1 | 39 | #2 | 7200 | 850 | 3 | 0.3 | - |
5 | #1 | 4500 | 400 | 5 | 0.7 | +1 | 40 | #2 | 7200 | 950 | 3 | 0.3 | - |
6 | #1 | 4500 | 400 | 5 | 1.0 | - | 41 | #2 | 7200 | 300 | 3 | 0.3 | - |
7 | #1 | 4500 | 400 | 5 | 1.5 | - | 42 | #2 | 7200 | 450 | 3 | 0.3 | - |
8 | #1 | 4500 | 400 | 5 | 2.0 | - | 43 | #3 | 6500 | 420 | 1 | 0.5 | −1 |
9 | #1 | 4500 | 400 | 5 | 3.0 | - | 44 | #3 | 6000 | 420 | 1 | 0.1 | +1 |
10 | #1 | 6000 | 500 | 5 | 3.0 | - | 45 | #3 | 6000 | 420 | 2 | 0.1 | +1 |
11 | #1 | 6000 | 500 | 5 | 4.0 | - | 46 | #3 | 6000 | 420 | 2 | 0.2 | - |
12 | #2 | 6000 | 550 | 3 | 0.3 | +1 | 47 | #3 | 6500 | 420 | 2 | 0.1 | −1 |
13 | #2 | 6000 | 550 | 3 | 0.5 | +1 | 48 | #3 | 6500 | 600 | 2 | 0.1 | −1 |
14 | #2 | 6000 | 550 | 3 | 0.7 | - | 49 | #3 | 6500 | 600 | 1.5 | 0.1 | - |
15 | #2 | 6000 | 550 | 3 | 0.8 | - | 50 | #3 | 6000 | 300 | 2 | 0.1 | - |
16 | #2 | 6000 | 550 | 3 | 0.9 | - | 51 | #3 | 5500 | 400 | 2 | 0.1 | +1 |
17 | #2 | 6000 | 550 | 5 | 0.3 | - | 52 | #3 | 5500 | 400 | 1.5 | 0.1 | +1 |
18 | #2 | 6000 | 550 | 5 | 0.5 | - | 53 | #3 | 5500 | 400 | 1.5 | 0.1 | +1 |
19 | #2 | 6000 | 550 | 5 | 0.7 | - | 54 | #3 | 5000 | 400 | 1.5 | 0.1 | - |
20 | #2 | 6000 | 550 | 5 | 0.9 | −1 | 55 | #3 | 5000 | 400 | 1.5 | 0.2 | −1 |
21 | #2 | 6000 | 550 | 5 | 1.1 | −1 | 56 | #3 | 5000 | 400 | 1.5 | 0.3 | −1 |
22 | #2 | 6700 | 550 | 5 | 0.3 | +1 | 57 | #3 | 5000 | 400 | 0.5 | 0.5 | - |
23 | #2 | 6700 | 550 | 5 | 0.6 | - | 58 | #3 | 6000 | 420 | 2.0 | 0.1 | - |
24 | #2 | 6700 | 550 | 5 | 0.8 | −1 | 59 | #3 | 5000 | 400 | 2.0 | 0.1 | - |
25 | #2 | 4500 | 550 | 5 | 0.8 | - | 60 | #3 | 5000 | 400 | 2.0 | 0.1 | - |
26 | #2 | 5500 | 550 | 5 | 0.8 | - | 61 | #4 | 4500 | 400 | 0–8 | 2.5 | - |
27 | #2 | 4000 | 550 | 5 | 0.6 | - | 62 | #4 | 6000 | 400 | 0–8 | 2.5 | - |
28 | #2 | 4000 | 550 | 5 | 0.5 | - | 63 | #4 | 6500 | 450 | 0–8 | 2.5 | - |
29 | #2 | 4000 | 550 | 5 | 0.3 | - | 64 | #4 | 6700 | 450 | 0–8 | 2.5 | - |
30 | #2 | 4000 | 550 | 5 | 0.1 | +1 | 65 | #4 | 6900 | 450 | 0–8 | 2.0 | - |
31 | #2 | 5000 | 550 | 5 | 0.1 | - | 66 | #4 | 6900 | 450 | 0–8 | 3.0 | - |
32 | #2 | 5000 | 550 | 3 | 0.1 | - | 67 | #4 | 6800 | 450 | 0–8 | 2.0 | - |
33 | #2 | 5200 | 550 | 3 | 0.1 | - | 68 | #4 | 6750 | 450 | 0–8 | 2.0 | - |
34 | #2 | 6750 | 550 | 3 | 0.1 | - | 69 | #4 | 6750 | 450 | 0–8 | 1.0 | - |
35 | #2 | 7200 | 550 | 3 | 0.1 | - | 70 | #4 | 6750 | 450 | 0–8 | 3.5 | - |
Chatter State | ||||||
---|---|---|---|---|---|---|
Stable | 0.2514 | 0.5346 | −0.0386 | 0.7899 | 0.0644 | 0.2900 |
Unlabeled-1 | 0.1364 | 0.7446 | −0.0025 | 0.9103 | 0.0413 | 0.1389 |
Chatter | 0.1093 | 0.8321 | −0.0042 | 0.8794 | 0.0457 | 0.1135 |
Unlabeled-2 | 0.1446 | 0.7742 | −0.0497 | 0.7886 | 0.0461 | 0.1943 |
Machining Condition | Labeled | Unlabeled | Mixed |
---|---|---|---|
No. 61 | 97.27% | 90.91% | 95.45% |
No. 63 | 85.15% | 88.12% | 94.06% |
No. 65 | 96.25% | 88.75% | 93.75% |
No. 67 | 87.78% | 87.78% | 94.44% |
No. 69 | 84.29% | 87.14% | 92.88% |
Machining Condition | EB-SSL | UDEED |
---|---|---|
No. 61 | 95.45% | 92.73% |
No. 63 | 94.06% | 91.09% |
No. 65 | 93.75% | 91.25% |
No. 67 | 94.44% | 92.22% |
No. 69 | 92.88% | 90.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Wang, P.; You, Y. Ensemble-Based Semi-Supervised Learning for Milling Chatter Detection. Machines 2022, 10, 1013. https://doi.org/10.3390/machines10111013
Liu W, Wang P, You Y. Ensemble-Based Semi-Supervised Learning for Milling Chatter Detection. Machines. 2022; 10(11):1013. https://doi.org/10.3390/machines10111013
Chicago/Turabian StyleLiu, Weichao, Pengyu Wang, and Youpeng You. 2022. "Ensemble-Based Semi-Supervised Learning for Milling Chatter Detection" Machines 10, no. 11: 1013. https://doi.org/10.3390/machines10111013
APA StyleLiu, W., Wang, P., & You, Y. (2022). Ensemble-Based Semi-Supervised Learning for Milling Chatter Detection. Machines, 10(11), 1013. https://doi.org/10.3390/machines10111013