Strong Convergence of Extragradient-Type Method to Solve Pseudomonotone Variational Inequalities Problems
Abstract
:1. Introduction
- (B1)
- The solution set of the problem (1), represented by SVIP is nonempty.
- (B2)
- A mapping is called to be pseudomonotone, i.e.,
- (B3)
- A mapping is said to be Lipschitz continuous, i.e., there exists such that
- (B4)
- A mapping is called to be sequentially weakly continuous, i.e., converges weakly to , where weakly converges to u.
2. Preliminaries
3. Main Results
Algorithm 1 (Explicit method for pseudomonotone variational inequalities problems). |
Step 0: Let and a sequence satisfying |
Step 1: Evaluate
|
If ; STOP. Otherwise, go to Step 2. |
Step 2: Evaluate |
where |
Step 3: Compute |
Step 4: Evaluate |
4. Numerical Experiments
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stampacchia, G. Formes bilinéaires coercitives sur les ensembles convexes. Comptes Rendus Hebd. Seances Acad. Sci. 1964, 258, 4413. [Google Scholar]
- Konnov, I.V. On systems of variational inequalities. Russ. Math. C/C Izv. Vyss. Uchebnye Zaved. Mat. 1997, 41, 77–86. [Google Scholar]
- Kassay, G.; Kolumbán, J.; Páles, Z. On Nash stationary points. Publ. Math. 1999, 54, 267–279. [Google Scholar]
- Kassay, G.; Kolumbán, J.; Páles, Z. Factorization of Minty and Stampacchia variational inequality systems. Eur. J. Oper. Res. 2002, 143, 377–389. [Google Scholar] [CrossRef]
- Kinderlehrer, D.; Stampacchia, G. An Introduction to Variational Inequalities and Their Applications; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2000. [Google Scholar] [CrossRef]
- Konnov, I. Equilibrium Models and Variational Inequalities; Elsevier: Amsterdam, The Netherlands, 2007; Volume 210. [Google Scholar]
- Elliott, C.M. Variational and Quasivariational Inequalities Applications to Free—Boundary ProbLems. (Claudio Baiocchi And António Capelo). SIAM Rev. 1987, 29, 314–315. [Google Scholar] [CrossRef]
- Nagurney, A.; Economics, E.N. A Variational Inequality Approach; Springer: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Takahashi, W. Introduction to Nonlinear and Convex Analysis; Yokohama Publishers: Yokohama, Japan, 2009. [Google Scholar]
- Korpelevich, G. The extragradient method for finding saddle points and other problems. Matecon 1976, 12, 747–756. [Google Scholar]
- Noor, M.A. Some iterative methods for nonconvex variational inequalities. Comput. Math. Model. 2010, 21, 97–108. [Google Scholar] [CrossRef]
- Censor, Y.; Gibali, A.; Reich, S. The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 2010, 148, 318–335. [Google Scholar] [CrossRef] [Green Version]
- Censor, Y.; Gibali, A.; Reich, S. Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 2012, 61, 1119–1132. [Google Scholar] [CrossRef]
- Malitsky, Y.V.; Semenov, V.V. An Extragradient Algorithm for Monotone Variational Inequalities. Cybern. Syst. Anal. 2014, 50, 271–277. [Google Scholar] [CrossRef]
- Tseng, P. A Modified Forward-Backward Splitting Method for Maximal Monotone Mappings. SIAM J. Control Optim. 2000, 38, 431–446. [Google Scholar] [CrossRef]
- Moudafi, A. Viscosity Approximation Methods for Fixed-Points Problems. J. Math. Anal. Appl. 2000, 241, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Fang, C.; Chen, S. An inertial subgradient-type method for solving single-valued variational inequalities and fixed point problems. Numer. Algorithms 2018, 79, 941–956. [Google Scholar] [CrossRef]
- Iusem, A.N.; Svaiter, B.F. A variant of korpelevich’s method for variational inequalities with a new search strategy. Optimization 1997, 42, 309–321. [Google Scholar] [CrossRef]
- Thong, D.V.; Hieu, D.V. Modified subgradient extragradient method for variational inequality problems. Numer. Algorithms 2017, 79, 597–610. [Google Scholar] [CrossRef]
- Thong, D.V.; Hieu, D.V. Weak and strong convergence theorems for variational inequality problems. Numer. Algorithms 2017, 78, 1045–1060. [Google Scholar] [CrossRef]
- Censor, Y.; Gibali, A.; Reich, S. Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 2011, 26, 827–845. [Google Scholar] [CrossRef]
- Gibali, A.; Reich, S.; Zalas, R. Outer approximation methods for solving variational inequalities in Hilbert space. Optimization 2017, 66, 417–437. [Google Scholar] [CrossRef]
- Ogbuisi, F.U.; Shehu, Y. A projected subgradient-proximal method for split equality equilibrium problems of pseudomonotone bifunctions in Banach spaces. J. Nonlinear Var. Anal. 2019, 3, 205–224. [Google Scholar]
- Ceng, L.C. Asymptotic inertial subgradient extragradient approach for pseudomonotone variational inequalities with fixed point constraints of asymptotically nonexpansive mappings. Commun. Optim. Theory 2020, 2020, 2. [Google Scholar]
- Wang, L.; Yu, L.; Li, T. Parallel extragradient algorithms for a family of pseudomonotone equilibrium problems and fixed point problems of nonself-nonexpansive mappings in Hilbert space. J. Nonlinear Funct. Anal. 2020, 2020, 13. [Google Scholar]
- Ceng, L.C. Two inertial linesearch extragradient algorithms for the bilevel split pseudomonotone variational inequality with constraints. J. Appl. Numer. Optim. 2020, 2, 213–233. [Google Scholar] [CrossRef]
- Ur Rehman, H.; Kumam, P.; Je Cho, Y.; Suleiman, Y.I.; Kumam, W. Modified Popov’s explicit iterative algorithms for solving pseudomonotone equilibrium problems. Optim. Methods Softw. 2020, 1–32. [Google Scholar] [CrossRef]
- Ur Rehman, H.; Kumam, P.; Kumam, W.; Shutaywi, M.; Jirakitpuwapat, W. The inertial sub-gradient extra-gradient method for a class of pseudo-monotone equilibrium problems. Symmetry 2020, 12, 463. [Google Scholar] [CrossRef] [Green Version]
- Ur Rehman, H.; Kumam, P.; Argyros, I.K.; Deebani, W.; Kumam, W. Inertial extra-gradient method for solving a family of strongly pseudomonotone equilibrium problems in real Hilbert spaces with application in variational inequality problem. Symmetry 2020, 12, 503. [Google Scholar] [CrossRef] [Green Version]
- Ur Rehman, H.; Kumam, P.; Argyros, I.K.; Alreshidi, N.A.; Kumam, W.; Jirakitpuwapat, W. A self-adaptive extra-gradient methods for a family of pseudomonotone equilibrium programming with application in different classes of variational inequality problems. Symmetry 2020, 12, 523. [Google Scholar] [CrossRef] [Green Version]
- Ur Rehman, H.; Kumam, P.; Shutaywi, M.; Alreshidi, N.A.; Kumam, W. Inertial optimization based two-step methods for solving equilibrium problems with applications in variational inequality problems and growth control equilibrium models. Energies 2020, 13, 3292. [Google Scholar] [CrossRef]
- Ur Rehman, H.; Kumam, P.; Abubakar, A.B.; Cho, Y.J. The extragradient algorithm with inertial effects extended to equilibrium problems. Comput. Appl. Math. 2020, 39, 100. [Google Scholar] [CrossRef]
- Antipin, A.S. On a method for convex programs using a symmetrical modification of the Lagrange function. Ekonomika Matematicheskie Metody 1976, 12, 1164–1173. [Google Scholar]
- Migórski, S.; Fang, C.; Zeng, S. A new modified subgradient extragradient method for solving variational inequalities. Appl. Anal. 2019, 1–10. [Google Scholar] [CrossRef]
- Yang, J.; Liu, H.; Liu, Z. Modified subgradient extragradient algorithms for solving monotone variational inequalities. Optimization 2018, 67, 2247–2258. [Google Scholar] [CrossRef]
- Kraikaew, R.; Saejung, S. Strong Convergence of the Halpern Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Spaces. J. Optim. Theory Appl. 2013, 163, 399–412. [Google Scholar] [CrossRef]
- Heinz, H. Bauschke, P.L.C. Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd ed.; CMS Books in Mathematics; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker, Inc.: New York, NY, USA, 1984. [Google Scholar]
- Cottle, R.W.; Yao, J.C. Pseudo-monotone complementarity problems in Hilbert space. J. Optim. Theory Appl. 1992, 75, 281–295. [Google Scholar] [CrossRef]
- Maingé, P.E. Strong Convergence of Projected Subgradient Methods for Nonsmooth and Nonstrictly Convex Minimization. Set-Valued Anal. 2008, 16, 899–912. [Google Scholar] [CrossRef]
- Takahashi, W. Nonlinear Functional Analysis; Yokohama Publishers: Yokohama, Japan, 2000. [Google Scholar]
- Liu, Z.; Zeng, S.; Motreanu, D. Evolutionary problems driven by variational inequalities. J. Differ. Equ. 2016, 260, 6787–6799. [Google Scholar] [CrossRef]
- Liu, Z.; Migórski, S.; Zeng, S. Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces. J. Differ. Equ. 2017, 263, 3989–4006. [Google Scholar] [CrossRef]
- Hu, X.; Wang, J. Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network. IEEE Trans. Neural Networks 2006, 17, 1487–1499. [Google Scholar] [CrossRef] [Green Version]
- Shehu, Y.; Dong, Q.L.; Jiang, D. Single projection method for pseudo-monotone variational inequality in Hilbert spaces. Optimization 2018, 68, 385–409. [Google Scholar] [CrossRef]
TOL | ||||||||
---|---|---|---|---|---|---|---|---|
Iter. | Iter. | Iter. | Iter. | Time | Time | Time | Time | |
13 | 51 | 501 | 5001 | 0.079821 | 0.247776 | 3.251465 | 43.637834 | |
12 | 51 | 501 | 5001 | 0.083870 | 0.236924 | 2.684370 | 39.651178 | |
9 | 51 | 501 | 5001 | 0.065422 | 0.235173 | 3.034747 | 43.630625 | |
6 | 1004 | 1004 | 5001 | 0.040866 | 8.051234 | 6.686632 | 42.431705 |
TOL | ||||||||
---|---|---|---|---|---|---|---|---|
Iter. | Iter. | Iter. | Iter. | Time | Time | Time | Time | |
43 | 46 | 99 | 989 | 0.289149 | 0.249285 | 0.475520 | 8.480530 | |
41 | 46 | 99 | 989 | 0.211707 | 0.187559 | 0.445240 | 6.898924 | |
29 | 32 | 99 | 989 | 0.138575 | 0.169190 | 0.394654 | 7.168460 |
TOL | ||||||||
---|---|---|---|---|---|---|---|---|
Iter. | Iter. | Iter. | Iter. | Time | Time | time | Time | |
8 | 27 | 265 | 2566 | 0.606917 | 1.907212 | 14.120655 | 107.506926 | |
7 | 27 | 265 | 2591 | 0.286659 | 1.057623 | 10.764532 | 116.258335 | |
8 | 26 | 258 | 2596 | 0.388227 | 1.190191 | 11.424257 | 107.584978 |
TOL | ||||||||
---|---|---|---|---|---|---|---|---|
Iter. | Iter. | Iter. | Iter. | Time | Time | Time | Time | |
16 | 220 | 2231 | 29253 | 0.21543 | 2.35401 | 29.86562 | 224.95083 | |
27 | 190 | 2072 | 25762 | 0.25322 | 2.64742 | 26.84528 | 198.26446 | |
43 | 411 | 3801 | 47891 | 0.78262 | 4.77116 | 42.41738 | 427.904781 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wairojjana, N.; Pakkaranang, N.; Rehman, H.u.; Pholasa, N.; Khanpanuk, T. Strong Convergence of Extragradient-Type Method to Solve Pseudomonotone Variational Inequalities Problems. Axioms 2020, 9, 115. https://doi.org/10.3390/axioms9040115
Wairojjana N, Pakkaranang N, Rehman Hu, Pholasa N, Khanpanuk T. Strong Convergence of Extragradient-Type Method to Solve Pseudomonotone Variational Inequalities Problems. Axioms. 2020; 9(4):115. https://doi.org/10.3390/axioms9040115
Chicago/Turabian StyleWairojjana, Nopparat, Nuttapol Pakkaranang, Habib ur Rehman, Nattawut Pholasa, and Tiwabhorn Khanpanuk. 2020. "Strong Convergence of Extragradient-Type Method to Solve Pseudomonotone Variational Inequalities Problems" Axioms 9, no. 4: 115. https://doi.org/10.3390/axioms9040115
APA StyleWairojjana, N., Pakkaranang, N., Rehman, H. u., Pholasa, N., & Khanpanuk, T. (2020). Strong Convergence of Extragradient-Type Method to Solve Pseudomonotone Variational Inequalities Problems. Axioms, 9(4), 115. https://doi.org/10.3390/axioms9040115