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Abstract: In this paper, we propose a new method, which is set up by incorporating an inertial
step with the extragradient method for solving a strongly pseudomonotone equilibrium problems.
This method had to comply with a strongly pseudomonotone property and a certain Lipschitz-type
condition of a bifunction. A strong convergence result is provided under some mild conditions, and
an iterative sequence is accomplished without previous knowledge of the Lipschitz-type constants of
a cost bifunction. A sufficient explanation is that the method operates with a slow-moving stepsize
sequence that converges to zero and non-summable. For numerical explanations, we analyze a
well-known equilibrium model to support our well-established convergence result, and we can see
that the proposed method seems to have a significant consistent improvement over the performance
of the existing methods.

Keywords: two-step extragradient method; strong convergence theorem; equilibrium problem;
strongly pseudomonotone equilibrium problems; lipschitz-like conditions; Hilbert spaces

1. Introduction

Let C to be a nonempty closed, convex subset of E and f : E× E→ R is a bifunction such that
f (u, u) = 0 for all u ∈ C. The equilibrium problem [1] for the bifunction f on C is defined as follows:

Find u∗ ∈ C such that f (u∗, v) ≥ 0, for all v ∈ C. (1)
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The equilibrium problem (shortly, EP) was originally introduced in the unifying nature by Blum
and Oettli [1] in 1994, and provides a comprehensive study on their theoretical properties. This unique
formulation of a problem has an absolutely sensational way to deal with a wide range of topics that
have emerged from the social sciences, economics, finance, restoration of image, ecology, transport,
networking, elasticity and optimization problems (for more details see, [2–4]). The equilibrium problem
covers several mathematical problems as a special case, namely minimization problems, the fixed
point problems, variational inequality problems (shortly, VIP), Nash equilibrium of non-cooperation
games, complementarity problems, problem of vector minimization and saddle point problems
(see, e.g., [1,5–7]). On the other hand, iterative methods are basic and powerful tools for studying
the numerical solution of an equilibrium problem. In this direction, two well-established approaches
are used, i.e., the proximal point method [8] and the auxiliary problem principle [9]. The strategy
of the proximal point method was originally developed by Martinet [10] for the problems of a
monotone variational inequality, and later Rockafellar [11] developed this idea for monotone operators.
Moudafi [8] proposed the proximal point method for monotone equilibrium problems. Furthermore,
Konnov [12] also provides a different variant of the proximal point method with weaker assumptions
in the case of equilibrium problems. Several numerical methods based on these techniques have been
developed to solve different classes of equilibrium problems in finite and infinite-dimensional abstract
spaces (for more details see, [12–29]). More specifically, Hieu et al. in [30] developed an iterative
sequence sequence {un} recursively as

u0 ∈ C,
vn = arg min

y∈C
{ξn f (un, y) + 1

2‖un − y‖2},

un+1 = arg min
y∈C

{ξn f (vn, y) + 1
2‖un − y‖2},

where {ξn} is a sequence of positive real numbers satisfying the following conditions:

T1 : lim
n→∞

ξn = 0 and T2 :
∞

∑
n=0

ξn = +∞. (2)

In addition, the inertial-like methods depend on the approach of the heavy-ball methods of the
second-order time dynamic system. Polyak began by considering inertial extrapolation as a speed-up
method to solve smooth convex minimization problems. Inertial-like methods are two-step iterative
schemes and the next iteration is achieved by making use of the previous two iterations (see [31,32]).
An inertial extrapolation term is required to boost the iterative sequence in order to achieve the desired
solution. These inertial methods are basically used to accelerate the iterative sequence towards the
required solution. Numerical reviews suggest that inertial effects often improve the performance of
the algorithm in terms of the number of iterations and time of execution in this context. These two
impressive advantages enhance the researcher’s interest in developing new inertial methods. There
are many methods are already have been established for the different classes of variational inequality
problem (for more details see [33–37]).

In this article, we focus on the second direction which consists of projection methods that are well
recognized and practically easy to carry out based on their convenient mathematical computation.
By relying on the research work of Hieu et al. [30] and Vinh et al. [38], we introduce an inertial
extragradient method for solving a specific class of equilibrium problems, where f can be a strongly
pseudomonotone bifunction. Our method is working without any knowledge of the Lipschitz-type
and strongly pseudomonotone constants of a bifunction. The advantage of our method is based on
the use of a stepsize sequence that gently converges to zero and non-summable. Due to this aspect
and the strong pseudomonotonicity of the bifunction, the strong convergence of our method has been
achieved. Nonetheless, we do not need to know such constants beforehand i.e., the input parameters
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of the method should not be such constants. In the end, the numerical experiments indicate that the
proposed method seems to be more effective than the family of existing ones [30,39,40].

The rest of this paper organized subsequently: In Section 2 we provide some preliminaries and
basic results that will be used throughout the paper. Section 3 includes our proposed method and the
corresponding convergence result. Section 4 contains some application of our results in the variational
inequality problems. Section 5 sets out the numerical experiments to explain the algorithmic efficiency
of our proposed algorithm.

2. Background

Now, we provide important lemmas, definitions and other concepts that are useful throughout
the convergence analysis. We continue to make use of C as a closed, convex subset of the Hilbert
space E. By 〈., .〉 and ‖.‖ we denote the inner product and norm on the Hilbert space respectively, etc.
Let G : E→ E is a well-defined operator and VI(G, C) is the solution set of a variational inequality
problem corresponding operator G over the set C. Moreover, EP( f , C) stands for the solution set of an
equilibrium problem upon the set C and u∗ is any arbitrary element of EP( f , C) or VI(G, C).

In addition, Let h : C → R is a convex function and subdifferential of h at u ∈ C is defined by:

∂h(u) = {z ∈ E : h(v)− h(u) ≥ 〈z, v− u〉, ∀ v ∈ C}.

The normal cone of C at u ∈ C is given as

NC(u) = {z ∈ E : 〈z, v− u〉 ≤ 0, ∀ v ∈ C}.

Definition 1 ([41]). The metric projection PC(u) of u onto a closed, convex subset C of E is define as follows:

PC(u) = arg min
v∈C

{‖v− u‖}.

Next, we have various notions of the bifunction monotonicity (see [1,42] for more details).

Definition 2. The bifunction f : E×E→ R on C for γ > 0 is said to be:

(i). Strongly monotone if f (u, v) + f (v, u) ≤ −γ‖u− v‖2, ∀ u, v ∈ C;
(ii). Monotone if f (u, v) + f (v, u) ≤ 0, ∀ u, v ∈ C;

(iii). Strongly pseudomonotone if f (u, v) ≥ 0 =⇒ f (v, u) ≤ −γ‖u− v‖2, ∀ u, v ∈ C;
(iv). Pseudomonotone if f (u, v) ≥ 0 =⇒ f (v, u) ≤ 0, ∀ u, v ∈ C;
(v). Satisfying the Lipschitz-type condition on C if there are two positive real numbers c1, c2 such that

f (u, w) ≤ f (u, v) + f (v, w) + c1‖u− v‖2 + c2‖v− w‖2, ∀ u, v, w ∈ C.

Remark 1. We obtain the following results from the above definitions.

strongly monotone =⇒ monotone =⇒ pseudomonotone

strongly monotone =⇒ strongly pseudomonotone =⇒ pseudomonotone

This section concludes with a few specific lemmas that are useful in studying the convergence
analysis of our proposed method.

Lemma 1 ([43]). Let C be a nonempty, closed and convex subset of a real Hilbert space E and h : C → R
be a convex, subdifferentiable and lower semicontinuous function on C. Moreover, u ∈ C is a minimizer of a
function h if and only if 0 ∈ ∂h(u) + NC(u), where ∂h(u) and NC(u) denotes the subdifferential of h at u and
the normal cone of C at u, respectively.
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Lemma 2 ([44]). For every a, b ∈ E and µ ∈ R then the subsequent item is true:

‖µa + (1− µ)b‖2 = µ‖a‖2 + (1− µ)‖b‖2 − µ(1− µ)‖a− b‖2.

Lemma 3 ([45]). Suppose {an} and {tn} are two sequences of nonnegative real numbers satisfying the
inequality an+1 ≤ an + tn for all n ∈ N. If ∑ tn < ∞, then limn→∞ an exists.

Lemma 4 ([46]). Let {an} and {bn} be two sequences of nonnegative real numbers. If ∑∞
n=1 an = ∞ and

∑∞
n=1 anbn < ∞, then lim infn→∞ bn = 0.

3. Convergence Analysis for an Algorithm

We develop an algorithmic procedure that consists of two strong convex minimization problems
with such an inertial term that is used to improve the convergence speed of the iterative sequence,
so that it is classified as an inertial extragradient method for strongly pseudomonotone equilibrium
problems. We have the following hypothesis on a bifunction that are compulsory to achieve the strong
convergence of the iterative sequence generated by Algorithm 1.

Assumption 1. Let a bifunction f : E×E→ R such that

f1. f (u, u) = 0, for all u ∈ C and f is strongly pseudomonotone on C.
f2. f satisfy the Lipschitz-type condition through two positive constants c1 and c2.
f3. f (u, .) is convex and subdifferentiable on C for each fixed u ∈ C.

Algorithm 1 (Inertial extragradient algorithm for strongly pseudomonotone equilibrium problems).

Initialization: Choose u−1, u0 ∈ C, θ ∈ [0, 1) with a sequence {εn} ⊂ [0,+∞) such that

+∞

∑
n=0

εn < +∞ (3)

holds. In addition, let {ξn} be the sequence of positive real numbers that satisfy the following
conditions:

T1 : lim
n→∞

ξn = 0 and T2 :
∞

∑
n=0

ξn = +∞. (4)

Iterative steps: Choose ϑn such that 0 ≤ ϑn ≤ βn, where

βn =

{
min

{
θ, εn
‖un−un−1‖

}
if un 6= un−1,

θ otherwise.
(5)

Step 1: Compute

vn = arg min
y∈C

{ξn f (wn, y) +
1
2
‖wn − y‖2},

where wn = un + ϑn(un − un−1). If wn = vn; STOP. Otherwise,
Step 2: Compute

un+1 = arg min
y∈C

{ξn f (vn, y) +
1
2
‖wn − y‖2}.

Set n := n + 1 and go back to Iterative steps.

Remark 2.

(i). Notice that if θ = 0, in the above method then it is equivalent to the default extragradient method in,
e.g., [30].
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(ii). Evidently, from the expression (3) and (5) we have

∞

∑
n=1

ϑn‖un − un−1‖ ≤
∞

∑
n=1

βn‖un − un−1‖ < ∞, (6)

which implies that
lim

n→∞
βn‖un − un−1‖ = 0. (7)

Next, we are proving the validity of the stopping criterion for the Algorithm 1.

Lemma 5. If vn = wn in Algorithm 1 then wn is the solution of a problem (1) over C.

Proof. By definition of vn with Lemma 1, we can write as

0 ∈ ∂2

{
ξn f (wn, y) +

1
2
‖wn − y‖2

}
(vn) + NC(vn).

Thus, there is a η ∈ ∂ f (wn, vn) and η ∈ NC(vn) such that

ξnη + vn − wn + η = 0.

Thus, we have
ξn〈η, y− vn〉+ 〈η, y− vn〉 = 0, ∀ y ∈ C.

Since η ∈ NC(vn) then 〈η, y− vn〉 ≤ 0, and with above expression implies that

ξn〈η, y− vn〉 ≥ 0, ∀ y ∈ C. (8)

Furthermore, by η ∈ f (wn, vn) and the subdifferential definition, we have

f (wn, y)− f (wn, vn) ≥ 〈η, y− vn〉, ∀ y ∈ C. (9)

From the expression (8) and (9) with ξn ∈ (0,+∞) implies that

f (wn, y)− f (wn, vn) ≥ 0, ∀ y ∈ C. (10)

By vn = wn and under the assumption f1 given that f (wn, y) ≥ 0, for all y ∈ C.

Lemma 6. We have the following important inequality from the Algorithm 1.

ξn f (vn, y)− ξn f (vn, un+1) ≥ 〈wn − un+1, y− un+1〉, ∀ y ∈ C.

Proof. By definition of un+1, we have

0 ∈ ∂2

{
ξn f (vn, y) +

1
2
‖wn − y‖2

}
(un+1) + NC(un+1).

Thus, for η ∈ ∂ f (vn, un+1) there exists an η ∈ NC(un+1) such that

ξnη + un+1 − wn + η = 0.

The above expression can be written as

〈wn − un+1, y− un+1〉 = ξn〈η, y− un+1〉+ 〈η, y− un+1〉, ∀ y ∈ C.
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Since η ∈ NC(un+1) then 〈η, y− un+1〉 ≤ 0 for all y ∈ C.
Thus, we obtain

〈wn − un+1, y− un+1〉 ≤ ξn〈η, y− un+1〉, ∀ y ∈ C. (11)

By η ∈ ∂ f (vn, un+1) and by subdifferential definition, we obtain

f (vn, y)− f (vn, un+1) ≥ 〈η, y− un+1〉, ∀ y ∈ C. (12)

Combining the expression (11) and (12) we obtain

ξn f (vn, y)− ξn f (vn, un+1) ≥ 〈wn − un+1, y− un+1〉, ∀ y ∈ C. (13)

Lemma 7. We also have the following important inequality from the Algorithm 1.

ξn f (wn, y)− ξn f (wn, vn) ≥ 〈wn − vn, y− vn〉, ∀ y ∈ C.

Proof. We may obtain the proof by following the same step as in the proof of Lemma 6.

Next, we give a crucial inequality which is useful to prove the boundedness of the iterative
sequence generated by Algorithm 1.

Lemma 8. Suppose that the assumptions f1- f4 as in Assumption 1 hold and the EP( f , C) 6= ∅. Thus, for each
u∗ ∈ EP( f , C), we can obtain

‖un+1 − u∗‖2 ≤ ‖wn − u∗‖2 − (1− 2c1ξn)‖wn − vn‖2 − (1− 2c2ξn)‖vn − un+1‖2

− 2γξn‖vn − u∗‖2.

Proof. It is follow from the Lemma 7 and substituting y = un+1, we obtain

ξn f (wn, un+1)− ξn f (wn, vn) ≥ 〈wn − vn, un+1 − vn〉. (14)

Next, substituting y = u∗ in Lemma 6, we have

ξn f (vn, u∗)− ξn f (vn, un+1) ≥ 〈wn − un+1, u∗ − un+1〉. (15)

Since f (u∗, vn) ≥ 0 then from the assumption ( f1), we have f (vn, u∗) ≤ −γ‖vn − u∗‖2 such that

〈wn − un+1, un+1 − u∗〉 ≥ ξn f (vn, un+1) + γξn‖vn − u∗‖2. (16)

By using the Lipschitz-type continuity of a bifunction f , we have

f (wn, un+1) ≤ f (wn, vn) + f (vn, un+1) + c1‖wn − vn‖2 + c2‖vn − un+1‖2. (17)

From the expression (16) and (17), we have

〈wn − un+1, un+1 − u∗〉 ≥ ξn
{

f (wn, un+1)− f (wn, vn)
}

− c1ξn‖wn − vn‖2 − c2ξn‖vn − un+1‖2 + γξn‖vn − u∗‖2.
(18)
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By the expression (14) and (18), we get

〈wn − un+1, un+1 − u∗〉 ≥ 〈wn − vn, un+1 − vn〉
− c1ξn‖wn − vn‖2 − c2ξn‖vn − un+1‖2 + γξn‖vn − u∗‖2.

(19)

Furthermore, we have the following facts:

2〈vn − wn, vn − un+1〉 = ‖wn − vn‖2 + ‖un+1 − vn‖2 − ‖wn − un+1‖2.

2〈wn − un+1, un+1 − u∗〉 = ‖wn − u∗‖2 − ‖un+1 − wn‖2 − ‖un+1 − u∗‖2.

From above two facts and the expression (19), we obtain

‖un+1 − u∗‖2 ≤ ‖wn − u∗‖2 − (1− 2c1ξn)‖wn − vn‖2 − (1− 2c2ξn)‖vn − un+1‖2

− 2γξn‖vn − u∗‖2.

Theorem 1. Let a bifunction f : E×E→ R satisfying the Assumptions 1. Then, for some u∗ ∈ EP( f , C) 6=
∅, the sequence {wn}, {un} and {vn} set up by Algorithm 1 strongly converges to u∗ ∈ EP( f , C).

Proof. Since ξn → 0 then there exist an n0 ∈ N such that

ξn ≤ min
{

1
2c1

,
1

2c2

}
for all n ≥ n0. (20)

By using the above condition on Lemma 8, we have

‖un+1 − u∗‖2 ≤ ‖wn − u∗‖2, ∀ n ≥ n0. (21)

Furthermore, the above expression for all n ≥ n0 can be written as

‖un+1 − u∗‖ ≤ ‖un + ϑn(un − un−1)− u∗‖
≤ ‖un − u∗‖+ ϑn‖un − un−1‖. (22)

By Lemma 3 with the expression (6) and (22) implies that

lim
n→∞

‖un − u∗‖ = l, for some finite l ≥ 0. (23)

By the definition of wn in Algorithm 1, we have

‖wn − u∗‖2 = ‖un + ϑn(un − un−1)− u∗‖2

= ‖(1 + ϑn)(un − u∗)− ϑn(un−1 − u∗)‖2

= (1 + ϑn)‖un − u∗‖2 − ϑn‖un−1 − u∗‖2 + ϑn(1 + ϑn)‖un − un−1‖2

≤ (1 + ϑn)‖un − u∗‖2 − ϑn‖un−1 − u∗‖2 + 2ϑn‖un − un−1‖2. (24)

The above expression with (23) and (7) implies that

lim
n→∞

‖wn − u∗‖ = l. (25)
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From Lemma 8 and the expression (24), we have

‖un+1 − u∗‖2

≤ (1 + ϑn)‖un − u∗‖2 − ϑn‖un−1 − u∗‖2 + 2ϑn‖un − un−1‖2

− (1− 2c1ξn)‖wn − vn‖2 − (1− 2c2ξn)‖vn − un+1‖2 − 2γξn‖vn − u∗‖2, (26)

which further implies that

(1− 2c1ξn)‖wn − vn‖2 + (1− 2c2ξn)‖vn − un+1‖2

≤ ‖un − u∗‖2 − ‖un+1 − u∗‖2 + ϑn
(
‖un − u∗‖2 − ‖un−1 − u∗‖2)+ 2ϑn‖un − un−1‖2. (27)

By taking the limit as n→ ∞ in the expression (27), we get

lim
n→∞

‖wn − vn‖ = lim
n→∞

‖vn − un+1‖ = 0. (28)

Thus, the expression (25) and (28) gives that

lim
n→∞

‖vn − u∗‖ = l. (29)

From the expression (23), (25) and (29) implies that the sequences {un}, {wn} and {vn} are
bounded, and for each u∗ ∈ EP( f , C), the limn→∞ ‖un− u∗‖2, limn→∞ ‖vn− u∗‖2, limn→∞ ‖wn− u∗‖2

exists. Next, we are going to prove that the sequence {un} strongly converges to u∗. It follows from
the expression (26) for each n ≥ n0 such that

2γξn‖vn − u∗‖2

≤ ‖un − u∗‖2 − ‖un+1 − u∗‖2 + ϑn
(
‖un − u∗‖2 − ‖un−1 − u∗‖2)+ 2ϑn‖un − un−1‖2. (30)

For some k > n0 using in the expression (30) gives that

k

∑
n=n0

2γξn‖vn − u∗‖2

≤
(
‖un0 − u∗‖2 − ‖uk+1 − u∗‖2)+ 2θ

k

∑
n=n0

‖un − un−1‖2

+ θ
(
‖uk − u∗‖2 − ‖un0−1 − u∗‖2)

≤ ‖un0 − u∗‖2 + θ‖uk − u∗‖2 + 2θ
k

∑
n=n0

‖un − un−1‖2

≤ M, (31)

for some M ≥ 0 and letting k→ ∞ leads to

∞

∑
n=1

2γξn‖vn − u∗‖2 < +∞. (32)

It follows from Lemma 4 and the expression (32) such that

lim inf ‖vn − u∗‖ = 0. (33)

Thus, the expression (29) and (33) gives that

lim
n→∞

‖vn − u∗‖ = 0. (34)
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From the expression (7), (28) and using the Cauchy inequality, we have

0 ≤ ‖un − vn‖ = ‖un − un+1‖+ ‖un+1 − vn‖ −→ 0 as n→ ∞. (35)

Finally, we get
lim

n→∞
‖un − u∗‖ = lim

n→∞
‖wn − u∗‖ = 0. (36)

This completes the proof.

If we take θ = 0 in the Algorithm 1, we get the result that appeared in the Hieu et al. [30].

Corollary 1. Let f : E × E → R be a bifunction satisfying the assumptions ( f1– f3). Thus, for some
u∗ ∈ EP( f , K) 6= ∅, the sequence {un} and {vn} are generated as follows:

i. Let u0 ∈ C and compute 
vn = arg min

y∈C
{ξn f (un, y) + 1

2‖un − y‖2},

un+1 = arg min
y∈C

{ξn f (vn, y) + 1
2‖un − y‖2},

where {ξn} be the sequence of positive real numbers satisfy the following conditions:

T1 : lim
n→∞

ξn = 0 and T2 :
∞

∑
n=0

ξn = +∞. (37)

The sequence {un} and {vn} strongly converges to the solution u∗ ∈ EP( f , C).

4. Application to Variational Inequality Problems

Now we discuss the application of our results to solve variational inequality problems involving
strongly pseudomonotone with Lipschitz continuous operator. An operator G : E→ E is called to be

• strongly pseudomonotone upon C for γ > 0 if

〈G(u), v− u〉 ≥ 0 =⇒ 〈G(v), u− v〉 ≤ −γ‖u− v‖2, ∀ u, v ∈ C;

• L-Lipschitz continuous upon C if ‖G(u)− G(v)‖ ≤ L‖u− v‖, ∀ u, v ∈ C.

The problem of variational inequality is to

find u∗ ∈ C such that 〈G(u∗), v− u∗〉 ≥ 0, ∀ v ∈ C.

Note: Suppose that the bifunction f (u, v) := 〈G(u), v − u〉 for all u, v ∈ C. Thus, the equilibrium
problem convert into problem of variational inequality with L = 1

2 c1 = 1
2 c2. It follows the definition of

vn in the Algorithm 1 and the above definition of bifunction f such that

vn = arg min
y∈C

{ξn f (wn, y) +
1
2
‖wn − y‖2}

= arg min
y∈C

{ξn〈G(wn), y− wn〉+
1
2
‖wn − y‖2}

= arg min
y∈C

{1
2
‖y− (wn − ξnG(wn)‖2

}
− ξ2

n
2
‖G(wn)‖2

= PC(wn − ξnG(wn)), (38)
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and likewise un+1 in Algorithm 1 can reduce to

un+1 = PC(wn − ξnG(vn)).

Assumption 2. We assume that G satisfying the following assumptions:

G1. G is strongly pseudomonotone on C and VI(G, C) 6= ∅;
G2. G is L-Lipschitz continuous upon C for some constant L > 0.

Thus, the Algorithm 1 is reduced to the following algorithm to solve a strongly pseudomonotone
variational inequality problem.

Corollary 2. Assume that G : C → E satisfies (G1-G2) as in Assumption 2. Let {wn}, {un} and {vn} be the
sequences generated as follows:

i. Choose u−1, u0 ∈ C, θ ∈ [0, 1) and a sequence {εn} ⊂ [0,+∞) such that

+∞

∑
n=0

εn < +∞, (39)

holds. In addition, let {ξn} be the sequence of positive real numbers which meets the following criteria:

T1 : lim
n→∞

ξn = 0 and T2 :
∞

∑
n=0

ξn = +∞. (40)

ii. Choose ϑn such that 0 ≤ ϑn ≤ βn where

βn =

min
{

θ, εn
‖un−un−1‖

}
if un 6= un−1,

θ otherwise.
(41)

iii. Compute 
wn = un + ϑn(un − un−1),
vn = PC(wn − ξnG(wn)),
un+1 = PC(wn − ξnG(vn)).

Thus, the sequence {wn}, {un} and {vn} strongly converges to u∗ ∈ VI(G, C).

By using θ = 0 in the Corollary 2, we get the following results.

Corollary 3. Assume that G : C → E satisfies (G1-G2) as in Assumption 2. Let {un} and {vn} be the
sequences generated as follows:

i. Choose u0 ∈ C and compute {
vn = PC(un − ξnG(un)),
un+1 = PC(un − ξnG(vn)),

where {ξn} be the sequence of positive real numbers satisfy the following conditions:

T1 : lim
n→∞

ξn = 0 and T2 :
∞

∑
n=0

ξn = +∞. (42)

Thus, the sequence {un} and {vn} strongly converges to u∗ ∈ VI(G, C).
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5. Computational Experiment

We present some numerical results to explain the efficiency of our proposed methods.
The MATLAB codes run in MATLAB version 9.5 (R2018b) on a PC Intel(R) Core(TM)i5-6200 CPU @
2.30GHz 2.40GHz, RAM 8.00 GB. In all of these examples, we use u−1 = u0 = v0 = (1, 1, · · · , 1, 1)T ,
and x-axis points out to the number of iterations or the time elapsed (in seconds), whereas y-axes show
for the value of Dn. For each method, the corresponding stopping criterion is used, which helps the
iterative sequence to converge the element of a solution set. Moreover, we use the following values for
the error terms and some other terms (n: Dimension of a Hilbert space; N: Total number of samples;
iter.: Average number of iterations; time: Average execution time).

(i). For Hieu et al. [30] (shortly, Algo1), we use

Dn = ‖un − vn‖2.

(ii). For Hieu et al. [39] (shortly, Algo2), we use

Dn = max
{
‖un+1 − vn‖2, ‖un+1 − un‖2}.

(iii). For Hieu et al. [40] (shortly, Algo3), we use θn = 0.50 and

Dn = max
{
‖un+1 − vn‖2, ‖un+1 − wn‖2}.

(iv). For Algorithm 1 (shortly, Algo4) we use θn = 0.50, εn = 1
n2 and

Dn = ‖wn − vn‖2.

5.1. Example 1

Assume that there will be n firms which produces the same product. Let u sets for a vector in
which each entry ui denotes the amount of the product produce by a firm i. Now choose the cost P
as a decreasing affine function that depends upon on the value of S = ∑m

i=1 ui, i.e., Pi(S) = φi − ψiS,
where φi > 0, ψi > 0. The profit function for each firm i is described by Fi(u) = Pi(S)ui − ti(ui),
where ti(ui) is the tax value and cost for generating ui. Assume that Ci = [umin

i , umax
i ] is the set

of actions corresponding to each firm i, and the strategy for the whole model take the form as
C := C1 × C2 × · · · × Cn. In fact, each firm tries to reach its peak revenue by choosing the comparable
stage of production on the hypothesis that other firms production is the input parameter. The technique
generally employed to handle this type of model concentrates mainly on the well-known Nash
equilibrium theory. We would like to remind that point u∗ ∈ C = C1 × C2 × · · · × Cn is the solution of
equilibrium the model if

Fi(u∗) ≥ Fi(u∗[ui]), ∀ ui ∈ Ci for all i = 1, 2, · · · , n,

with the vector u∗[ui] represent the vector get from u∗ by taking u∗i with ui. Finally, we take f (u, v) :=
ϕ(u, v)− ϕ(u, u) with ϕ(u, v) := −∑n

i=1 Fi(u[vi]) and the problem for finding the Nash equilibrium
point for the model may be taken as:

Find u∗ ∈ C : f (u∗, v) ≥ 0, ∀ v ∈ C.

In addition, we assume that both the tax and the fee for the production of the unit are increasing
as the amount of productivity increases. It follows from [19,22], the bifunction f be taken as

f (u, v) = 〈Pu + Qv + q, v− u〉,
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where q ∈ Rn. Also, Q− P is symmetric negative definite and Q is symmetric positive semidefinite
of order n with Lipschitz parameters c1 = c2 = 1

2‖P− Q‖ (for more details see, [22]). During this
Example in Section 5.1, both P, Q are arbitrary generated (Choosing two diagonal matrices randomly
A1 and A2 with entries from [0, 2] and [−2, 0] respectively. Two random orthogonal matrices B1 and
B2 (RandOrthMat(n)) are able to generate a positive semi definite matrix M1 = B1 A1BT

1 and negative
semi definite matrix M2 = B2 A2BT

2 . Finally, set Q = M1 + MT
1 , S = M2 + MT

2 and P = Q− S.) and
entries of q randomly belongs to [−1, 1]. The constraint set C ⊂ Rn is convex and closed as

C := {u ∈ Rn : −5 ≤ ui ≤ 5}.

The numerical results regarding Example in Section 5.1 have shown in Figures 1–9 and Table 1.

Table 1. The numerical findings of the Figures 1–9.

Algo1 [30] Algo2 [39] Algo3 [40] Algo4

n N ξn iter. time iter. time iter. time iter. time
10 10 1

n+1 83 0.8633 56 0.4295 35 0.2929 19 0.1319

10 10 log(n+3)
n+1 52 0.4297 64 0.4862 40 0.3040 23 0.1896

10 10 1
log(n+3) 94 0.8761 400 5.0501 305 3.4549 82 0.6732

50 10 1
n+1 136 1.2545 107 0.9765 69 0.7521 54 0.4691

50 10 log(n+3)
n+1 86 0.6913 80 0.7453 55 0.4792 38 0.3128

50 10 1
log(n+3) 100 0.8427 205 2.2437 175 1.7925 86 0.7685

100 10 1
n+1 222 3.0913 150 1.8105 105 1.1990 76 0.8656

100 10 log(n+3)
n+1 100 1.1624 92 1.0639 69 0.7964 36 0.4207

100 10 1
log(n+3) 113 1.3110 211 2.7524 188 2.4022 98 1.1311

0 10 20 30 40 50 60 70 80 90

Number of iterartions

10-10

10-8

10-6

10-4

10-2

100

102

Figure 1. Example 5.1 for n = 10 and ξn = 1
n+1 .
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0 10 20 30 40 50 60 70

Number of iterartions

10-10

10-8

10-6

10-4

10-2

100

102

Figure 2. Example 5.1 for n = 10 and ξn =
log(n+3)

n+1 .

0 50 100 150 200 250 300 350 400

Number of iterartions

10-15

10-10

10-5

100

105

Figure 3. Example 5.1 for n = 10 and ξn = 1
log(n+3) .
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0 20 40 60 80 100 120 140

Number of iterartions

10-10

10-8

10-6

10-4

10-2

100

102

Figure 4. Example 5.1 for n = 50 and ξn = 1
n+1 .

0 10 20 30 40 50 60 70 80 90

Number of iterartions

10-10

10-8

10-6

10-4

10-2

100

102

Figure 5. Example 5.1 for n = 50 and ξn =
log(n+3)

n+1 .
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0 50 100 150 200 250

Number of iterartions

10-10

10-5

100

105

Figure 6. Example 5.1 for n = 50 and ξn = 1
log(n+3) .

0 50 100 150 200 250

Number of iterartions

10-10

10-8

10-6

10-4

10-2

100

102

104

Figure 7. Example 5.1 for n = 100 and ξn = 1
n+1 .
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0 10 20 30 40 50 60 70 80 90 100

Number of iterartions

10-10

10-8

10-6

10-4

10-2

100

102

Figure 8. Example 5.1 for n = 100 and ξn =
log(n+3)

n+1 .

0 50 100 150 200 250

Number of iterartions

10-10

10-5

100

105

Figure 9. Example in Section 5.1 for n = 100 and ξn = 1
log(n+3) .

5.2. Example 2

Let a bifunction f define on the convex set as

f (u, v) =
〈(

BBT + S + D
)
u, v− u

〉
,
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where D is an n × n diagonal matrix with nonnegative elements. Moreover, S is an n × n
skew-symmetric matrix and B is an n× n matrix. The constraint set C ⊂ Rn is taken as

C = {u ∈ Rn : Au ≤ b}

while A is an 100× n matrix and nonnegative vector b. We can see that bifunction f is γ-monotone
through γ = min{eig(BBT + S + D)} and Lipschitz-like constants are c1 = c2 = 1

2 max{eig(BBT +

S + D)}. In our case we generate the random matrices (B = rand(n), C = rand(n), S = 0.5C− 0.5CT ,
D = diag(rand(n, 1)).) and the numerical results regarding Example in Section 5.2 are shown in
Figures 10–19 and Table 2.

Table 2. The experimental results for Figures 10–19.

Algo1 [30] Algo2 [39] Algo3 [40] Algo4

n N ξn iter. time iter. time iter. time iter. time
5 10 1

(n+1) log(n+3) 212 2.5360 225 2.6580 179 3.3746 122 1.3161

5 10 1
n+1 200 2.1717 254 3.4295 164 1.8637 137 1.7299

5 10 log(n+3)
n+1 181 2.6688 194 2.3646 158 1.8703 106 1.1469

5 10 1√
n+1

89 0.9550 132 1.5186 72 0.7889 52 0.5644

5 10 1
log(n+3) 137 1.5127 152 1.8906 89 0.9427 80 0.8514

25 50 75 100 125 150 175 200 225 25

Number of iterartions

10-8

10-6

10-4

10-2

100

102

Figure 10. Example in Section 5.2 for n = 5 and ξn = 1
(n+1) log(n+3) .



Symmetry 2020, 12, 503 18 of 24

0 0.5 1 1.5 2 2.5 3 3.5

Elapsed time [sec]

10-8

10-6

10-4

10-2

100

102

Figure 11. Example in Section 5.2 for n = 5 and ξn = 1
(n+1) log(n+3) .

0 25 50 75 100 125 150 175 200 225 250 275 300

Number of iterartions

10-8

10-6

10-4

10-2

100

Figure 12. Example in Section 5.2 for n = 5 and ξn = 1
n+1 .
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0 0.5 1 1.5 2 2.5 3 3.5

Elapsed time [sec]

10-8

10-6

10-4

10-2

100

102

Figure 13. Example in Section 5.2 for n = 5 and ξn = 1
n+1 .

0 20 40 60 80 100 120 140 160 180 200

Number of iterartions

10-8

10-6

10-4

10-2

100

Figure 14. Example in Section 5.1 for n = 5 when ξn =
log(n+3)

n+1 .
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0 0.2 0.4 0.6 0.8 1 1.2 1.4

Elapsed time [sec]

10-6

10-4

10-2

100

Figure 15. Example in Section 5.1 for n = 5 when ξn =
log(n+3)

n+1 .

0 20 40 60 80 100 120 140

Number of iterartions

10-8

10-6

10-4

10-2

100

102

Figure 16. Example in Section 5.1 for n = 5 when ξn = 1√
n+1

.
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Elapsed time [sec]

10-8

10-6

10-4

10-2

100

102

Figure 17. Example in Section 5.1 for n = 5 when ξn = 1√
n+1

.

0 20 40 60 80 100 120 140 160

Number of iterartions

10-8

10-6

10-4

10-2

100

102

Figure 18. Example in Section 5.1 for n = 5 when ξn = 1
log(n+3) .
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Elapsed time [sec]

10-8

10-6

10-4

10-2

100

102

Figure 19. Example in Section 5.1 for n = 5 when ξn = 1
log(n+3) .

Remark 3. From our numerical experiments we have the following observation:

1. There is no need to have prior knowledge of Lipschitz-constant for running algorithms on Matlab.
2. The convergence rate of the iterative sequence is based on the convergence rate of the stepsize sequence.
3. The convergence rate of the iterative sequence also depends on the nature of the problem and the size of the

problem.
4. Due to the variable stepsize sequence, a particular value of the stepsize that is not suited to the current

iteration of the algorithm often causes disturbance and hump in the behaviour of an iterative sequence.

6. Conclusions

In this article, we established a new method by associating an inertial term with an extragradient
method for dealing with a family of strongly pseudomonotone equilibrium problems. The proposed
method requires a sequence of diminishing and non-summable stepsizes and carried out without
previous knowledge of the Lipschitz-type constants and the strong pseudo-monotonicity modulus
constant. Two numerical experiments have been reported to measure the computational efficiency of
our method in comparison to other existing methods. Numerical experiments have pointed out that
the method with an inertial scheme performs better than those without inertial scheme.
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