Fractional Singular Differential Systems of Lane–Emden Type: Existence and Uniqueness of Solutions
Abstract
:1. Introduction
- (1.)
- The Caputo derivative is introduced in both sides of the coupled system.
- (2.)
- Furthermore, the Riemann Liouville integral is introduced in one nonlinearity of the right hand side of each the equation of the considered system.
- (3.)
- Another important point in this paper is the time singularity at the origin for each equation of the above -system.
2. Preliminaries
3. Main Results
4. Example
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Atangana, A. Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties. Phys. A Stat. Mech. Appl. 2018, 505, 688–706. [Google Scholar] [CrossRef]
- Atangana, A.; Gomez-Aguilar, J.F. Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 2018, 133, 166. [Google Scholar] [CrossRef]
- Coronel-Escamilla, A.; Gomez-Aguilar, J.F.; Torres, L.; Escobar-Jiminez, R.F. A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel. Phys. A Stat. Mech. Appl. 2018, 491, 406–424. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regan, D.; Staněk, S. Positive Solutions for Mixed Problems of Singular Fractional Differential Equations. Math. Nachr. 2012, 285, 27–41. [Google Scholar] [CrossRef]
- Ibrahim, R.W. Existence of Nonlinear Lane–Emden Equation of Fractional Order. Miskolc Math. Notes 2012, 13, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Li, C.; Sarwar, S. Existence and Continuation of Solutions for Caputo Type Fractional Differential Equations. Electron. J. Differ. Equ. 2016, 2016, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Taïeb, A.; Dahmani, Z. A New Problem of Singular Fractional Differential Equations. J. Dyn. Syst. Geom. Theory 2016, 14, 165–187. [Google Scholar] [CrossRef]
- Taïeb, A.; Dahmani, Z. On Singular Fractional Differential Systems and Ulam-hyers Stabilities. Int. J. Mod. Math. Sci. 2016, 14, 262–282. [Google Scholar]
- Dahmani, Z.; Taïeb, A. Solvability For High Dimensional Fractional Differential Systems With High Arbitrary Orders. J. Adv. Sci. Res. Dyn. Control Syst. 2015, 7, 51–64. [Google Scholar]
- Dahmani, Z.; Taïeb, A. A Coupled System of Fractional Differential Equations Involing Two Fractional Orders. ROMAI J. 2015, 11, 141–177. [Google Scholar]
- Dahmani, Z.; Taïeb, A. Solvability of A Coupled System of Fractional Differential Equations with Periodic and Antiperiodic Boundary Conditions. PALM Lett. 2015, 1, 29–36. [Google Scholar]
- Dahmani, Z.; Taïeb, A.; Bedjaoui, N. Solvability and Stability for Nonlinear Fractional Integro-Differential Systems of High Fractional Orders. Facta Univer. Ser. Math. Inform. 2016, 31, 629–644. [Google Scholar]
- Emden, R. Gaskugeln; Teubner: Leipzig/Berlin, Germany, 1907. [Google Scholar]
- Ghaffour, L.; Dahmani, Z. Fractional differential equations with arbitrary singularities. J. Inf. Optim. Sci. 2018, 39, 1547–1565. [Google Scholar] [CrossRef]
- Bai, Z.; Sun, W. Existence and Multiplicity of Positive Solutions for Singular Fractional Boundary Value Problems. Comput. Math. Appl. 2012, 63, 1369–1381. [Google Scholar] [CrossRef] [Green Version]
- Benzidan, A.; Dahmani, Z. On a class of nonlinear singular differential equations. J. Interdiscip. Math. 2019, 22. [Google Scholar] [CrossRef]
- Dahmani, Z.; Tabharit, L. Fractional Order Differential Equations Involving Caputo Derivative. Theory Appl. Math. Comput. Sci. 2014, 4, 40–55. [Google Scholar]
- Taïeb, A.; Dahmani, Z. A Coupled System of Nonlinear Differential Equations Involing m Nonlinear Terms. Georjian Math. J. 2016, 23, 447–458. [Google Scholar] [CrossRef]
- Ibrahim, R.W. Stability of A Fractional Differential Equation. Int. J. Math. Comput. Phys. Quantum Eng. 2013, 7, 487–492. [Google Scholar]
- Lane, J.H. On the Theoretical Temperature of the Sun; under the Hypothesis of a Gaseous Mass maintaining its Volume by its Internal Heat, and depending on the Laws of Gases as known to Terrestrial Experiment. Am. J. Sci. Arts. 1870, 50, 57–74. [Google Scholar] [CrossRef]
- Serrin, J.; Zou, H. Existence of Positive Solutions of Lane–Emden Systems. Atti Del Sem. Mat. Fis. Univ. Modena. 1998, 46, 369–380. [Google Scholar]
- Mechee, S.M.; Senu, N. Numerical Study of Fractional Differential Equations of Lane–Emden Type by Method of Collocation. Appl. Math. 2012, 3, 21476. [Google Scholar] [CrossRef] [Green Version]
- Taïeb, A.; Dahmani, Z. The High Order Lane–Emden Fractional Differential System: Existence, Uniqueness and Ulam Stabilities. Kragujev. J. Math. 2016, 40, 238–259. [Google Scholar]
- Bekkouche, Z.; Dahmani, Z.; Zhang, G. Solutions and Stabilities for a 2D-Non Homogeneous Lane–Emden Fractional System. Int. J. Open Probl. Compt. Math. 2018, 11, 1–14. [Google Scholar] [CrossRef]
- Bahous, Y.; Dahmani, Z.; Bekkouche, Z. A two parameter singular fractional differential problem of Lane–Emden type. Turkish J. Ineq. 2019, 3, 35–53. [Google Scholar]
- Okunuga, S.A.; Ehigie, J.O.; Sofoluwe, A.B. Treatment of Lane–Emden Type Equations via Second Derivative Backward Differentiation Formula Using Boundary Value Technique. In Proceedings of the World Congress on Engineering, London, UK, 4–6 July 2012. [Google Scholar]
- Gouari, Y.; Dahmani, Z.; Sarikaya, M.Z. A non local multi-point singular fractional integro-differential problem of lane-emden type. Math. Methods Appl. Sci. 2020, 43, 6938–6949. [Google Scholar] [CrossRef]
- Gouari, Y.; Dahmani, Z.; Ndiaye, A. A generalized sequential problem of Lane–Emden type via fractional calculus. Moroc. J. Pure Appl. Anal. 2020, 6, 14–29. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouari, Y.; Dahmani, Z.; Farooq, S.E.; Ahmad, F. Fractional Singular Differential Systems of Lane–Emden Type: Existence and Uniqueness of Solutions. Axioms 2020, 9, 95. https://doi.org/10.3390/axioms9030095
Gouari Y, Dahmani Z, Farooq SE, Ahmad F. Fractional Singular Differential Systems of Lane–Emden Type: Existence and Uniqueness of Solutions. Axioms. 2020; 9(3):95. https://doi.org/10.3390/axioms9030095
Chicago/Turabian StyleGouari, Yazid, Zoubir Dahmani, Shan E. Farooq, and Farooq Ahmad. 2020. "Fractional Singular Differential Systems of Lane–Emden Type: Existence and Uniqueness of Solutions" Axioms 9, no. 3: 95. https://doi.org/10.3390/axioms9030095
APA StyleGouari, Y., Dahmani, Z., Farooq, S. E., & Ahmad, F. (2020). Fractional Singular Differential Systems of Lane–Emden Type: Existence and Uniqueness of Solutions. Axioms, 9(3), 95. https://doi.org/10.3390/axioms9030095