Mindfulness Model Using Polariton Oscillation in Plasmonic Circuit for Human Performance Management
Abstract
1. Introduction
2. Mindfulness Model
3. Simulation Results and Discussions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bishop, S.; Lau, M.; Shapiro, S.; Carlson, L.; Anderson, N.; Carmody, J.; Segal, Z.; Abbey, S.; Speca, M.; Velting, D.; et al. Mindfulness: A proposed operational definition. Clin. Psychol. Sci. Pract. 2004, 11, 230–241. [Google Scholar] [CrossRef]
- Barnes, S.; Brown, K.; Krusemark, E.; Campbell, W.; Rogge, R. The role of mindfulness in romantic relationship satisfaction and responses to relationship stress. J. Marital. Fam. Ther. 2007, 33, 482–500. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.; Ryan, R. The benefits of being present: Mindfulness and its role in psychological well-being. J. Personal. Soc. Psychol. 2003, 84, 822–848. [Google Scholar] [CrossRef] [PubMed]
- Farb, N.; Anderson, A.; Mayberg, H.; Bean, J.; McKeon, D.; Segal, Z. Minding one’s emotions: Mindfulness training alters the neural expression of sadness. Emotion 2010, 10, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Wachs, K.; Cordova, J. Mindful relating: Exploring mindfulness and emotion repertoires in intimate relationships. J. Marital. Fam. Ther. 2007, 33, 464–481. [Google Scholar] [CrossRef] [PubMed]
- Bazarko, D.; Cate, R.; Azocar, F.; Kreitzer, M. The impact of an innovative mindfulness-based stress reduction program on the health and well-being of nurses employed in a corporate setting. J. Workplace Behav. Health 2013, 28, 107–133. [Google Scholar] [CrossRef]
- Hofmann, S.; Sawyer, A.; Witt, A.; Oh, D. The effect of mindfulness-based therapy on anxiety and depression: A meta-analytic review. J. Consult. Clin. Psychol. 2010, 78, 169–183. [Google Scholar] [CrossRef]
- Gross, C.; Kreitzer, M.; Reilly-Spong, M.; Wall, M.; Winbush, N.; Patterson, R.; Mahowald, M.; Cramer-Bornemann, M. Mindfulness-based stress reduction vs. pharmacotherapy for primary chronic insomnia: A pilot randomized controlled clinical trial. Explore 2011, 7, 76–87. [Google Scholar] [CrossRef][Green Version]
- Goldin, P.; Gross, J. Effects of mindfulness-based stress reduction (MBSR) on emotion regulation in social anxiety disorder. Emotion 2010, 10, 83–91. [Google Scholar] [CrossRef]
- Shonin, E.; Van Gordon, W.; Griffiths, M. Mindfulness-based interventions: Towards mindful clinical integration. Front. Psychol. 2013, 4, 194. [Google Scholar] [CrossRef]
- Aikens, K.; Astin, J.; Pelletier, K.; Levanovich, K.; Baase, C.; Park, Y.; Bodnar, C. Mindfulness goes to work: Impact of an online workplace intervention. J. Occup. Environ. Med. 2014, 56, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Li, R.; Huang, F.; Tang, F. The potential for mindfulness-based intervention in workplace mental health promotion: Results of a randomized controlled trial. PLoS ONE 2015, 10, e0138089. [Google Scholar] [CrossRef]
- Hülsheger, U.; Alberts, H.; Feinholdt, A.; Lang, J. Benefits of mindfulness at work: The role of mindfulness in emotion regulation, emotional exhaustion, and job satisfaction. J. Appl. Psychol. 2012, 98, 310–325. [Google Scholar] [CrossRef]
- Shiba, K.; Nishimoto, M.; Sugimoto, M.; Ishikawa, Y. The association between meditation practice and job performance: A cross-sectional study. PLoS ONE 2015, 10, e0128287. [Google Scholar]
- Ali, J.; Youplao, P.; Amiri, I.S.; Pornsuwancharoen, N.; Yupapin, P. Hibernation model based on polariton successive filtering. Natl. Acad. Sci. Lett. 2019. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black Holes and Entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Arumona, A.E.; Amiri, I.S.; Singh, G.; Yupapin, P. Full-time slot teleportation using unified space-time function control. Microw. Opt. Technol. Lett. 2020, 62, 1577–1580. [Google Scholar] [CrossRef]
- Ali, J.; Pornsuwancharoen, N.; Youplao, P.; Amiri, I.S.; Yupapin, P. Characteristics of an on-chip polariton successively filtered circuit. Results Phys. 2018, 11, 410–413. [Google Scholar] [CrossRef]
- Youplao, P.; Pornsuwancharoen, P.; Amiri, I.S.; Jalil, M.A.; Aziz, M.S.; Ali, J.; Singh, G.; Yupapin, P.; Grattan, K.T.V. Microring stereo sensor model using kerr–vernier effect for bio-cell sensor and communication. Nano Commun. Netw. 2018, 17, 30–35. [Google Scholar] [CrossRef]
- Bunruangses, M.; Youplao, P.; Amiri, I.S.; Pornsuwancharoen, N.; Yupapin, P. Brain sensor and communication model using plasmonic microring antenna network. Opt. Quantum Electron. 2019, 51, 349. [Google Scholar] [CrossRef]
- Bunruangses, M.; Youplao, P.; Amiri, I.S.; Pornsuwancharoen, N.; Puntawanunt, S.; Singh, G.; Yupapin, P. Microring distributed sensors using space-time function control. IEEE Sens. J. 2020, 20, 799–805. [Google Scholar] [CrossRef]
- Bunruangses, M.; Youplao, P.; Amiri, I.S.; Pornsuwancharoen, N.; Yupapin, P. Double vision model using space-time function control within silicon microring system. Silicon 2019. [Google Scholar] [CrossRef]
- Bunruangses, M.; Youplao, P.; Amiri, I.S.; Pornsuwancharoen, N.; Punthawanunt, S.; Singh, G.; Yupapin, P. Electron Cloud Density Generated by Microring-Embedded Nano-grating System. Plasmonics 2020, 15, 543–549. [Google Scholar] [CrossRef]
- Pornsuwancharoen, N.; Youplao, P.; Amiri, I.S.; Ali, J.; Yupapin, P. On-chip polariton generation using an embedded nanograting microring circuit. Results Phys. 2018, 10, 913–916. [Google Scholar] [CrossRef]
- Noorden, A.F.A.; Chaudhary, K.; Bahadoran, M.; Aziz, M.S.; Jalil, M.A.; Tiong, O.C.; Ali, J.; Yupapin, P. Rabi oscillation generation in the microring resonator system with double-series ring resonators. Optoelectron. Lett. 2015, 11, 342–347. [Google Scholar] [CrossRef]
- Poznanski, R.R.; Cacha, L.A.; Al-Wesabi, Y.M.S.; Ali, J.; Bahadoran, M.; Yupapin, P.P.; Yunus, J. Solitonic conduction of electrotonic signals in neuronal branchlets with polarized microstructure. Sci. Rep. 2017, 7, 2746. [Google Scholar] [CrossRef]
- Youplao, P.; Pornsuwancharoen, N.; Amiri, I.S.; Punthawanunt, S.; Yupapin, P. Deep meditation model based-on polariton successive filtering method. Yoga Phisio 2019, 43, 207–211. [Google Scholar]
- Derkachova, A.; Kolwas, K. Size Dependence of Multipolar Plasmon Resonance Frequencies and Damping Rates in Simple Metal Spherical Nanoparticles. Eur. Phys. J.-Spec. Top. 2007, 144, 93–99. [Google Scholar] [CrossRef]
- Tunsiri, S.; Nopparat, T.; Thanunchai, T.; Somsak, M.; Yupapin, P. Microring switching control using plasmonic ring resonator circuits for super-channel use. Plasmonics 2019, 14, 1669–1677. [Google Scholar] [CrossRef]
- Prince, G. Controlling level splitting by strong coupling of surface plasmon resonances with rhodamine-6g on a gold grating. Plasmonics 2018, 13, 2067–2077. [Google Scholar]
- Kabat-Zinn, J. Wherever You Go, There You Are: Mindfulness Meditation in Everyday Life; Hachette Books: New York, NY, USA, 1994. [Google Scholar]
- Hoge, E.; Bui, E.; Marques, L.; Metcalf, C.; Morris, L.; Robinaugh, D.; Worthington, J.; Pollack, M.; Simon, N. Randomized controlled trial of mindfulness meditation for generalized anxiety disorder: Effects on anxiety and stress reactivity. J. Clin. Psychiatry 2013, 74, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Hyperion, M.L.; Hopthrow, T.; Randsley de Moura, G. A moment of mindfulness: Computer-mediated mindfulness practice increases state mindfulness. PLoS ONE 2016, 11, e0153923. [Google Scholar]
- Moore, A.; Malinowski, P. Meditation, mindfulness and cognitive flexibility. Conscious. Cogn. 2009, 18, 176–186. [Google Scholar] [CrossRef]
- Punthawanunt, S.; Yupapin, P. Meditation on a daily basis makes wise without violence. Yoga Phisio 2018, 4, 1–4. [Google Scholar]
- Walsh, R.; Shapiro, S. The meeting of meditative disciplines and western psychology: A mutually enriching dialogue. Am. Psychol. 2006, 61, 227–239. [Google Scholar] [CrossRef]
- Pornsuwancharoen, N.; Amiri, I.S.; Ali, J.; Youplao, P.; Yupapin, P. Meditation mathematical formalism and lorentz factor calculation based-on mindfulness foundation. Results Phys. 2018, 11, 1034–1038. [Google Scholar] [CrossRef]
- Pornsuwancharoen, N.; Amiri, I.S.; Suhailin, F.H.; Aziz, M.S.; Ali, J.; Singh, G.; Yupapin, P. Micro-current source generated by a WGM of light within a stacked silicon-graphene-Au waveguide. IEEE Photonics Technol. Lett. 2017, 29, 1768–1771. [Google Scholar] [CrossRef]
- Prabhu, A.M.; Alan, T.; Zhanghua, H.; Vien, V. Extreme miniaturization of silicon add-drop microring filters for VLSI photonics applications. IEEE Photonics J. 2010, 2, 436–444. [Google Scholar] [CrossRef]
- Blaber, M.G.; Arnold, M.D.; Ford, M.J. Search for the ideal plasmonic nanoshell: The effects of surface scattering and alternatives to gold and silver. J. Phys. Chem. C 2009, 113, 3041–3045. [Google Scholar] [CrossRef]
Parameters | Symbols | Values | Units |
---|---|---|---|
Input power | P | 150 | mW |
Length of silicon linear waveguide | L | 14.0 | µm |
Si center ring radius | Rd | 2.0 | µm |
Left small ring radius | RL | 1.0 | µm |
Right small ring radius | RR | 1.0 | µm |
Au dielectric constant [38] | 6.9 | ||
Au permittivity [38] | 10.0 | ||
Au grating width | WAU | 0.4 | µm |
Au thickness | d | 0.2 | µm |
Au length | LAU | 1.6 | µm |
Refractive index of Au [38] | n | 1.80 | |
Insertion loss | 0.5 | dB | |
Coupling coefficient | κ | 0.06–0.70 | |
Refractive index Si [38] | 3.42 | ||
Si nonlinear refractive index [39] | 1.3 × 10−13 | m2W−1 | |
Optical center wavelength | 1.50 | µm | |
Waveguide core effective [39] | 0.50 | μm2 | |
Waveguide loss | α | 0.50 | dB.(cm)−1 |
Plasma frequency [40] | ωp | 1.2990 × 1016 | radsec−1 |
Electron mass | m | 9.11 × 10−31 | kg |
Electron charge | e | 1.6 × 10−19 | Coulomb |
Permittivity of free space | 8.85 × 10−12 | Fm−1 | |
Reduced Planck’s constant | ℏ | 1.00 | ARU |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suwandee, S.; Arumona, A.E.; Ray, K.; Youplao, P.; Yupapin, P. Mindfulness Model Using Polariton Oscillation in Plasmonic Circuit for Human Performance Management. Axioms 2020, 9, 76. https://doi.org/10.3390/axioms9030076
Suwandee S, Arumona AE, Ray K, Youplao P, Yupapin P. Mindfulness Model Using Polariton Oscillation in Plasmonic Circuit for Human Performance Management. Axioms. 2020; 9(3):76. https://doi.org/10.3390/axioms9030076
Chicago/Turabian StyleSuwandee, Senee, Arumona Edward Arumona, Kanad Ray, Phichai Youplao, and Preecha Yupapin. 2020. "Mindfulness Model Using Polariton Oscillation in Plasmonic Circuit for Human Performance Management" Axioms 9, no. 3: 76. https://doi.org/10.3390/axioms9030076
APA StyleSuwandee, S., Arumona, A. E., Ray, K., Youplao, P., & Yupapin, P. (2020). Mindfulness Model Using Polariton Oscillation in Plasmonic Circuit for Human Performance Management. Axioms, 9(3), 76. https://doi.org/10.3390/axioms9030076