Existence Results for Nonlocal Multi-Point and Multi-Term Fractional Order Boundary Value Problems
Abstract
:1. Introduction
2. Basic Results
3. Existence and Uniqueness Results
- , for all and
- (i)
- F has a fixed point inor
- (ii)
- there is a(the boundary of U in C) andwith
- There exist a function and a nondecreasing function such that
- , is continuous function with and there exist constant with such that
- There exists a constant such that
4. Existence Results for Problem (1) and (2) with
5. Existence Results for Problem (1) and (2) with
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific: Singapore, 2011. [Google Scholar]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Danbury, CT, USA, 2006. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticy; World Scientific: Singapore, 2010. [Google Scholar]
- Javidi, M.; Ahmad, B. Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton—Zooplankton system. Ecol. Model. 2015, 318, 8–18. [Google Scholar] [CrossRef]
- Arafa, A.A.M.; Rida, S.Z.; Khalil, M. Fractional modeling dynamics of HIV and CD4+ T-cells during primary infection. Nonlinear Biomed. Phys. 2012, 6, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Y.; Wang, Z.; Ye, H. Optimal control of a fractional-order HIV-immune system with memory. IEEE Trans. Control Syst. Technol. 2012, 20, 763–769. [Google Scholar] [CrossRef]
- Carvalho, A.; Pinto, C.M.A. A delay fractional order model for the co-infection of malaria and HIV/AIDS. Int. J. Dyn. Control 2017, 5, 168–186. [Google Scholar] [CrossRef]
- Torvik, P.J.; Bagley, R.L. On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 1984, 51, 294–298. [Google Scholar] [CrossRef]
- Mainardi, F. Some basic problems in continuum and statistical mechanics. In Fractals and Fractional Calculus in Continuum Mechanics; Carpinteri, A., Mainardi, F., Eds.; Springer: Berlin, Germany, 1997; pp. 291–348. [Google Scholar]
- Thaiprayoon, C.; Ntouyas, S.K.; Tariboon, J. On the nonlocal Katugampola fractional integral conditions for fractional Langevin equation. Adv. Differ. Equ. 2015, 2015, 374. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y. Fractional Evolution Equations and Inclusions: Analysis and Control; Elsevier/Academic Press: London, UK, 2016. [Google Scholar]
- Stanek, S. Periodic problem for two-term fractional differential equations. Fract. Calc. Appl. Anal. 2017, 20, 662–678. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Henderson, J.; Luca, R. Positive solutions for a system of coupled fractional boundary value problems. Lith. Math. J. 2018, 58, 15–32. [Google Scholar] [CrossRef]
- Ntouyas, S.K.; Ahmad, B.; Alghanmi, M.; Alsaedi, A. Generalized fractional differential equations and inclusions equipped with nonlocal generalized fractional integral boundary conditions. Topol. Methods Nonlinear Anal. 2019, 54, 1051–1073. [Google Scholar] [CrossRef]
- Agarwal, R.; Hristova, S.; O’Regan, D. Mittag-Leffler stability for non-instantaneous impulsive Caputo fractional differential equations with delays. Math. Slovaca 2019, 69, 583–598. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. Existence theory for nonlocal boundary value problems involving mixed fractional derivatives. Nonlinear Anal. Model. Control 2019, 24, 937–957. [Google Scholar] [CrossRef]
- Iskenderoglu, G.; Kaya, D. Symmetry analysis of initial and boundary value problems for fractional differential equations in Caputo sense. Chaos Solitons Fractals 2020, 134, 109684. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Broom, A.; Alsaedi, A.; Ntouyas, S.K. Nonlinear integro-differential equations involving mixed right and left fractional derivatives and integrals with nonlocal boundary data. Mathematics 2020, 8, 336. [Google Scholar] [CrossRef] [Green Version]
- Cen, Z.; Liu, L.-B.; Huang, J. A posteriori error estimation in maximum norm for a two-point boundary value problem with a Riemann-Liouville fractional derivative. Appl. Math. Lett. 2020, 102, 106086. [Google Scholar] [CrossRef]
- Liu, K.; Wang, J.-R.; Zhou, Y.; O’Regan, D. Hyers-Ulam stability and existence of solutions for fractional differential equations with Mittag-Leffler kernel. Chaos Solitons Fractals 2020, 132, 109534. [Google Scholar] [CrossRef]
- Alsaedi, A.; Alghamdi, N.; Agarwal, R.P.; Ntouyas, S.K.; Ahmad, B. Multi-term fractional-order boundary-value problems with nonlocal integral boundary conditions. Electron. J. Differ. Equ. 2018, 87, 16. [Google Scholar]
- Ahmad, B.; Alghamdi, N.; Alsaedi, A.; Agarwal, R.P.; Ntouyas, S.K. A system of coupled multi-term fractional differential equations with three-point coupled boundary conditions. Fract. Calc. Appl. Anal. 2019, 22, 601–618. [Google Scholar] [CrossRef]
- Ruzhansky, M.; Tokmagambetov, N.; Torebek, B.T. On a non-local problem for a multi-term fractional diffusion-wave equation. Fract. Calc. Appl. Anal. 2020, 23, 324–355. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations. In North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 2014. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2014. [Google Scholar]
- Krasnoselskii, M.A. Two remarks on the method of successive approximations. Uspekhi Mat. Nauk 1955, 10, 123–127. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2005. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, B.; Alghamdi, N.; Alsaedi, A.; Ntouyas, S.K. Existence Results for Nonlocal Multi-Point and Multi-Term Fractional Order Boundary Value Problems. Axioms 2020, 9, 70. https://doi.org/10.3390/axioms9020070
Ahmad B, Alghamdi N, Alsaedi A, Ntouyas SK. Existence Results for Nonlocal Multi-Point and Multi-Term Fractional Order Boundary Value Problems. Axioms. 2020; 9(2):70. https://doi.org/10.3390/axioms9020070
Chicago/Turabian StyleAhmad, Bashir, Najla Alghamdi, Ahmed Alsaedi, and Sotiris K. Ntouyas. 2020. "Existence Results for Nonlocal Multi-Point and Multi-Term Fractional Order Boundary Value Problems" Axioms 9, no. 2: 70. https://doi.org/10.3390/axioms9020070
APA StyleAhmad, B., Alghamdi, N., Alsaedi, A., & Ntouyas, S. K. (2020). Existence Results for Nonlocal Multi-Point and Multi-Term Fractional Order Boundary Value Problems. Axioms, 9(2), 70. https://doi.org/10.3390/axioms9020070