Fuzzy b-Metric Spaces: Fixed Point Results for ψ-Contraction Correspondences and Their Application
Abstract
:1. Introduction
2. Background and Relevant Literature
- 1.
- if and only if ,
- 2.
- ,
- 3.
- , for all ,
- If implies
- for all non-positive real numbers ,
- for all if and only if ,
- for all
- for
- is a non-decreasing function on and
- A sequence is convergent and converges to if for all and denoted as .
- If for all sufficiently large and for any then is called a Cauchy sequence in .
- If every Cauchy sequence is convergent in then is called a “complete fuzzy -metric space”.
- A subset of is a complete space if and only if it is complete with induced pseudo -metric for every .
- A subset is open if for every there exist such that implies .
- A subset is closed if it contains all of its limit points.
- The closure of denoted by is defined as the set of all points of that are the limit points of some sequence in .
3. Main Results
4. Application to Linear Equations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Schweizer, B.; Sklar, A. Statistical Metric Spaces. Pac. J. Math. 1960, 10, 313–334. [Google Scholar] [CrossRef] [Green Version]
- Schweizer, B.; Sklar, A.; Thorp, E. The Metrization of Statistical Metric Spaces. Pac. J. Math. 1960, 10, 673–675. [Google Scholar] [CrossRef]
- Schweizer, B.; Sklar, A. Triangle Inequalities in a Class of Statistical Metric Spaces. J. Lond. Math. Soc. 1963, 38, 401–406. [Google Scholar] [CrossRef]
- Kramosil, I.; Michalek, J. Fuzzy metric and statistical metric spaces. Kyber-Netica 1975, 11, 326–334. [Google Scholar]
- George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef] [Green Version]
- Yamaod, O.; Sintunavarat, W. Fixed point theorems for (α,β)-(ψ,φ)- contractive mapping in “𝖇-metric spaces” with some numerical results and applications. J. Nonlinear Sci. Appl. 2016, 9, 22–34. [Google Scholar] [CrossRef]
- Grabiec, M. Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 1983, 27, 385–389. [Google Scholar] [CrossRef]
- Shena, Y.; Qiub, D.; Chenc, W. Fixed point theorems in fuzzy metric spaces. Appl. Math. Lett. 2012, 25, 138–141. [Google Scholar] [CrossRef] [Green Version]
- Subrahmanyam, P.V. A common fixed point theorem in fuzzy metric spaces. Inf. Sci. 1995, 83, 109–112. [Google Scholar] [CrossRef]
- Abbas, M.; Ali, B.; Vetro, C. Some fixed point results for admissible Geraghty contraction type mappings in fuzzy metric spaces. Iran. J. Fuzzy Syst. 2017, 14, 161–177. [Google Scholar]
- Gregori, V.; Sapena, A. On fixed point theorem in fuzzy metric spaces. Fuzzy Set Syst. 2002, 125, 245–252. [Google Scholar] [CrossRef]
- Kaleva, O. On the convergence of fuzzy sets. Fuzzy Set Syst. 1985, 17, 53–65. [Google Scholar] [CrossRef]
- Razani, A. Existence of fixed point for the nonexpansive mapping of intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2006, 30, 367–373. [Google Scholar] [CrossRef]
- Saleem, N.; Abbas, M.; Raza, Z. Optimal coincidence best approximation solution in non-archimedean fuzzy metric spaces. Iran. J. Fuzzy Syst. 2016, 13, 113–124. [Google Scholar]
- Saleem, N.; Habib, I.; De la Sen, M. Some new results on coincidence points for multivalued Suzuki type mappings in fairly complete spaces. Computation 2020, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Saleem, N.; Abbas, M.; Ali, V.; Raza, Z. Fixed points of Suzuki type generalized multivalued mappings in fuzzy metric spaces with applications. Fixed Point Theory Appl. 2015, 2015, 36. [Google Scholar] [CrossRef] [Green Version]
- Sen, M.; Abbas, M.; Saleem, N. On optimal fuzzy best proximity coincidence points of proximal contractions involving cyclic mappings in non-Archimedean fuzzy metric spaces. Mathematics. 2017, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.; Saleem, N.; De la Sen, M. Optimal coincidence point results in partially ordered non-Archimedean fuzzy metric spaces. Fixed Point Theory Appl. 2016, 2016, 44. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.; Saleem, N.; Sohail, K. Optimal coincidence best approximation solution in b-fuzzy metric spaces. Commun. Nonlinear Anal. 2019, 6, 1–12. [Google Scholar]
- Raza, Z.; Saleem, N.; Abbas, M. Optimal coincidence points of proximal quasi-contraction mappings in non-Archimedean fuzzy metric spaces. J. Nonlinear Sci. Appl. 2016, 9, 3787–3801. [Google Scholar] [CrossRef] [Green Version]
- Nadler, S.B., Jr. Multi-valued contraction mappings. Pacific J. Math. 1969, 30, 475–488. [Google Scholar] [CrossRef]
- Hadžíc, O. Fixed point theorems for multivalued mappings in some classes of fuzzy metric spaces. Fuzzy Sets Syst. 1989, 29, 115–125. [Google Scholar] [CrossRef]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fis. Univ. Modena 1998, 46, 263–276. [Google Scholar]
- Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. Unianowsk Gos. Ped. Inst. 1989, 30, 26–37. [Google Scholar]
- Bourbaki, N. Topologie Generale; Herman: Paris, France, 1976. [Google Scholar]
- Kir, N.; Kiziltun, H. On Some well known fixed point theorems in b-Metric spaces. Turk. J. Anal. Number Theory 2013, 1, 13–16. [Google Scholar] [CrossRef] [Green Version]
- Saleem, N.; Ali, B.; Abbas, M.; Raza, Z. Fixed points of Suzuki type generalized multivalued mappings in fuzzy metric spaces with applications. Fixed Point Theory Appl. 2015, 1, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T.; Mlaiki, N.L.; Aydi, H.; Souayah, N. Double controlled metric type spaces and some fixed point results. Mathematics 2018, 6, 320. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T.; Abodayeh, K.; Mlaiki, N. On fixed point generalizations to partial b-metric spaces. J. Comput. Anal. Appl. 2015, 19, 883–891. [Google Scholar]
- Singh, S.L.; Prasad, B. Some coincidence theorems and stability of iterative procedures. Comput. Math. Appl. 2008, 55, 2512–2520. [Google Scholar] [CrossRef] [Green Version]
- Van An, T.; Tuyen, L.Q.; Van Dung, N. Stone-type theorem on b-metric spaces and applications. Topol. Its Appl. 2015, 185, 50–64. [Google Scholar] [CrossRef]
- Aghajani, A.; Abbas, M.; Roshan, J.R. Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces. Math. Slovaca 2014, 64, 941–960. [Google Scholar] [CrossRef]
- Fallahi, K.; Rad, G.S. Fixed point results in cone metric spaces endowed with a graph. SCMA 2017, 6, 39–47. [Google Scholar]
- Faraji, H.; Nourouzi, K. Fixed and common fixed points for (ψ,φ )-weakly contractive mappings in b-metric spaces. SCMA 2017, 1, 49–62. [Google Scholar]
- Cain, G.L.; Kasriel, R.H. Fixed and periodic points of local contraction mappings on probabilistic metric spaces. Math. System. Theory 1976, 9, 289–297. [Google Scholar] [CrossRef]
- Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. arXiv 2015, arXiv:1512.03967v1. [Google Scholar] [CrossRef]
- Sintunavarat, W.; Kumam, P. Common fixed point theorem for cyclic generalized multi-valued contraction mappings. Appl. Math. Lett. 2012, 25, 1849–1855. [Google Scholar] [CrossRef] [Green Version]
- Dinevari, T.; Frigon, M. Fixed point results for multivalued contractions on a metric space with a graph. J. Math. Anal. Appl. 2013, 405, 507–517. [Google Scholar] [CrossRef]
- Pathak, H.K.; Agarwal, R.P.; Cho, Y.J. Coincidence and fixed points for multi-valued mappings and its application to nonconvex integral inclusions. J. Comput. Appl. Math. 2015, 283, 201–217. [Google Scholar] [CrossRef]
- Mehmood, N.; Azam, A.; Kočinac, L.D.R. Multivalued fixed point results in cone metric spaces. Topology Its Appl. 2015, 179, 156–170. [Google Scholar] [CrossRef]
- Tiammee, J.; Charoensawan, P.; Suantai, S. Fixed Point Theorems for Multivalued Nonself G-Almost Contractions in Banach Spaces Endowed with Graphs. Hindawi J. Funct. Spaces 2017, 2017, 7053849. [Google Scholar]
- Lael, F.; Heidarpour, Z. Fixed point theorems for a class of generalized nonexpansive mappings. Fixed Point Theory Appl. 2016, 2016, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Petrusel, G. Fixed point results for multivalued contractions on ordered gauge spaces. Central Eur. J. Math. 2009, 7, 520–528. [Google Scholar] [CrossRef]
- Kumam, P.; Sintunavarat, W. A new contractive condition approach to φ-fixed point results in metric spaces and its applications. J. Comput. Appl. Math. 2017, 311, 194–204. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, M.; Lael, F.; Saleem, N. Fuzzy b-Metric Spaces: Fixed Point Results for ψ-Contraction Correspondences and Their Application. Axioms 2020, 9, 36. https://doi.org/10.3390/axioms9020036
Abbas M, Lael F, Saleem N. Fuzzy b-Metric Spaces: Fixed Point Results for ψ-Contraction Correspondences and Their Application. Axioms. 2020; 9(2):36. https://doi.org/10.3390/axioms9020036
Chicago/Turabian StyleAbbas, Mujahid, Fatemeh Lael, and Naeem Saleem. 2020. "Fuzzy b-Metric Spaces: Fixed Point Results for ψ-Contraction Correspondences and Their Application" Axioms 9, no. 2: 36. https://doi.org/10.3390/axioms9020036
APA StyleAbbas, M., Lael, F., & Saleem, N. (2020). Fuzzy b-Metric Spaces: Fixed Point Results for ψ-Contraction Correspondences and Their Application. Axioms, 9(2), 36. https://doi.org/10.3390/axioms9020036