Periodic Solution and Asymptotic Stability for the Magnetohydrodynamic Equations with Inhomogeneous Boundary Condition
Abstract
:1. Introduction
2. Preliminaries
- is the bounded domain, and consists of smooth connected components and being inside of see [22] (p. 1). This means is enclosed by consequently. Such a structure of the boundary may be applied for the modeling of fluid movement inside of pipes. The fluid velocity field is tangent to at the piece of the boundary.
- and satisfies
3. Results
4. Approximate Problem and a Priori Estimates
5. Estimates of the Higher Order Derivatives
6. Proof of Theorem 5 and Theorem 6
7. Asymptotic Stability
8. Navier–Stokes Equation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alfven, H. Existence of electromagnetic-hydrodynamic waves. Nature 1942, 150, 405–406. [Google Scholar] [CrossRef]
- Gala, S.; Guo, Z.; Ragusa, M.A. A remark on the regularity criterion of Boussinesq equations with zero heat conductivity. Appl. Math. Lett. 2014, 27, 70–73. [Google Scholar] [CrossRef]
- Gala, S.; Liu, Q.; Ragusa, M.A. A new regularity criterion for the nematic liquid crystal flows. Appl. Anal. 2012, 91, 1741–1747. [Google Scholar] [CrossRef]
- Gala, S.; Liu, Q.; Ragusa, M.A. Logarithmically improved regularity criterion for the nematic liquid crystal flows in space. Comput. Math. Appl. 2013, 65, 1738–1745. [Google Scholar] [CrossRef]
- Gala, S.; Ragusa, M.A.; Sawano, Y.; Tanaka, H. Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz-Morrey spaces. Appl. Anal. 2014, 93, 356–368. [Google Scholar] [CrossRef]
- Vasil’ev, A.N. The Field Theoretic Renormalization Group in Critical Behaviour Theory and Stochastic Dynamics; Chapman & Hall/CRC: Boca Raton, FL, USA, 2004. [Google Scholar]
- Mitchner, M.; Krüger, C.H. Partially Ionized Gases; Wiley: New York, NY, USA, 1973. [Google Scholar]
- Schlüter, A. Dynamik des plasmas-I—Grundgleichungen, plasma in gekreuzten feldern. Z. Naturforsch. A 1950, 5, 72–78. [Google Scholar]
- Schlüter, A. Dynamik des plasmas-II—Plasma mit neutralgas. Z. Naturforsch. A 1951, 6, 73–79. [Google Scholar] [CrossRef]
- Pikelner, S.B. Fundamentals of Cosmic Electrodynamics; Fizmatgiz: Moscow, Russia, 1961; (In Russian). (Pikelner, S.B. Fundamentals of Cosmic Electrodynamics; NASA Technik Translation: Washington, DC, USA, 1964.). [Google Scholar]
- Notte-Cuello, E.A.; Rojas-Medar, M.D.; Rojas-Medar, M.A. Periodic strong solutions of the magnethohydrodynamic type equations. Proyeccciones 2002, 21, 199–224. [Google Scholar]
- Fujita, H.; Kato, T. On the Navier–Stokes initial value problem I. Arch. Ration. Mech. Anal. 1964, 16, 269–315. [Google Scholar] [CrossRef]
- Lassner, G. Über Ein Rand-Anfangswertproblem der Magnetohydrodinamik. Arch. Ration. Mech. Anal. 1967, 25, 388–405. [Google Scholar] [CrossRef]
- Boldrini, J.L.; Rojas-Medar, M.A. On a system of evolution equations of Magnetohydrodinamic type. Matemát. Contemp. 1995, 8, 1–19. [Google Scholar]
- Rojas-Medar, M.A.; Boldrini, J.L. Global strong solutions of equations of magnetohydrodynamic type. J. Aust. Math. Soc. Ser. B 1997, 38, 291–306. [Google Scholar] [CrossRef]
- Damázio, P.; Rojas-Medar, M.A. On some questions of the weak solutions of evolution equations for magnetohydrodynamic type. Proyecciones 1997, 16, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Notte-Cuello, E.A.; Rojas-Medar, M.A. On a system of evolution equations of magnetohydrodynamic type: An iterational approach. Proyecciones 1998, 17, 133–165. [Google Scholar] [CrossRef]
- Rojas-Medar, M.A.; Beltrán-Barrios, R. The initial value problem for the equations of magnetohydrodynamic type in noncylindrical domains. Rev. Mater. Univ. Complut. Madrid 1995, 8, 229–251. [Google Scholar]
- Berselli, L.C.; Ferreira, J. On the magnetohydrodynamic type equations in a new class of non-cylindrical domains. Boll. Unione Mater. Ital. 1999, 2-B, 365–382. [Google Scholar]
- Serrin, J. A note on the existence of periodic solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 1959, 3, 120–122. [Google Scholar] [CrossRef]
- Kato, H. Existence of periodic solutions of the Navier–Stokes equations. J. Math. Anal. Appl. 1997, 208, 141–157. [Google Scholar] [CrossRef]
- Morimoto, H. Survey on time periodic problem for fluid flow under inhomogeneous boundary condition. Discret. Contin. Dyn. Syst. Ser. S 2012, 5, 631–639. [Google Scholar] [CrossRef]
- Hsia, C.-H.; Jung, C.-Y.; Nguyen, T.B.; Shiue, M.-C. On time periodic solutions, asymptotic stability and bifurcations of Navier–Stokes equations. Numer. Math. 2017, 135, 607–638. [Google Scholar] [CrossRef]
- Amrouche, G.; Girault, V. On the existence and regularity of the solutions of Stokes problem in arbitrary dimension. Proc. Jpn. Acad. Ser. A 1991, 67, 171–175. [Google Scholar] [CrossRef]
- Giga, Y.; Miyakawa, T. Solutions in Lr of the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. 1985, 89, 267–281. [Google Scholar] [CrossRef]
- Simon, J. Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure. SIAM J. Math. Anal. 1990, 21, 1093–1117. [Google Scholar] [CrossRef]
- Kobayashi, T. Time periodic solutions of the Navier–Stokes equations under general outflow condition. Tokyo J. Math. 2009, 32, 409–424. [Google Scholar] [CrossRef]
- Heywood, J.G. The Navier–Stokes equations: On the existence, regularity and decay of solutions. Indiana Univ. Math. J. 1980, 29, 639–681. [Google Scholar] [CrossRef]
- Amann, H. Ordinary Differential Equations; Walter de Gruyter &C: Berlin, Germany, 1990. [Google Scholar]
- Burton, T.A. Stability and Periodic Solutions of Ordinary and Functional Differential Equations; Series “Mathematics in Science and Engineering”; Academic Press: Orlando, FL, USA, 1985; Volume 178. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondrashuk, I.; Notte-Cuello, E.A.; Poblete-Cantellano, M.; Rojas-Medar, M.A. Periodic Solution and Asymptotic Stability for the Magnetohydrodynamic Equations with Inhomogeneous Boundary Condition. Axioms 2019, 8, 44. https://doi.org/10.3390/axioms8020044
Kondrashuk I, Notte-Cuello EA, Poblete-Cantellano M, Rojas-Medar MA. Periodic Solution and Asymptotic Stability for the Magnetohydrodynamic Equations with Inhomogeneous Boundary Condition. Axioms. 2019; 8(2):44. https://doi.org/10.3390/axioms8020044
Chicago/Turabian StyleKondrashuk, Igor, Eduardo Alfonso Notte-Cuello, Mariano Poblete-Cantellano, and Marko Antonio Rojas-Medar. 2019. "Periodic Solution and Asymptotic Stability for the Magnetohydrodynamic Equations with Inhomogeneous Boundary Condition" Axioms 8, no. 2: 44. https://doi.org/10.3390/axioms8020044
APA StyleKondrashuk, I., Notte-Cuello, E. A., Poblete-Cantellano, M., & Rojas-Medar, M. A. (2019). Periodic Solution and Asymptotic Stability for the Magnetohydrodynamic Equations with Inhomogeneous Boundary Condition. Axioms, 8(2), 44. https://doi.org/10.3390/axioms8020044