Note on Limit-Periodic Solutions of the Difference Equation xt + 1 − [h(xt) + λ]xt = rt, λ > 1
Abstract
:1. Introduction
2. Preliminaries and Auxiliary Results
- (i)
- is uniformly limit-periodic,
- (ii)
- is (Stepanov) -limit-periodic,
- (iii)
- is uniformly semi-periodic,
- (iv)
- is (Stepanov) -semi-periodic.
- (i)
- (ii)
- ,
- (iii)
- if is the Jacobian matrix of f at , then there exists a non-singular solution of the homogeneous system
3. Limit-Periodic Solutions: Scalar Case
4. Limit-Periodic Solutions: Vector Case
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Damanik, D.; Fillman, J. Spectral properties of limit-periodic operators. arXiv, 2018; arXiv:1802.05794. [Google Scholar]
- Damanik, D.; Gan, Z. Spectral properties of limit-periodic Schrödinger operators. Commun. Pure Appl. Anal. 2011, 10, 859–871. [Google Scholar] [CrossRef]
- Alonso, A.I.; Obaya, R.; Ortega, R. Differential equations with limit-periodic forcings. Proc. Am. Math. Soc. 2003, 131, 851–857. [Google Scholar] [CrossRef]
- Andres, J.; Pennequin, D. Semi-periodic solutions of difference and differential equations. Bound. Value Prob. 2012, 2012, 141. [Google Scholar] [CrossRef]
- Andres, J.; Pennequin, D. Limit-periodic solutions of difference and differential systems without global Lipschitzianity restrictions. J. Differ. Equ. Appl. 2018, 24, 955–975. [Google Scholar] [CrossRef]
- Andres, J.; Pennequin, D. Existence, localization and stability of limit-periodic solutions to differential equations involving cubic nonlinearities. Topol. Meth. Nonlinear Anal. 2019, in press. [Google Scholar]
- Seifert, G. Almost periodic solutions for limit periodic systems. SIAM J. Appl. Math. 1972, 22, 38–44. [Google Scholar] [CrossRef]
- Tarallo, M.; Zhou, Z. Limit periodic upper and lower solutions in a generic case. Discr. Cont. Dyn. Syst. 2018, 38, 293–309. [Google Scholar] [CrossRef]
- Akhmet, M.U. Almost periodic solutions of differential equations with piecewise constant argument of generalized type. Nonlinear Anal. Hybrid Syst. 2008, 2, 456–467. [Google Scholar] [CrossRef]
- Akhmet, M.U.; Kivilcim, A. Periodic motions generated from non-autonomous grazing dynamics. Commun. Nonlinear Sci. Numer. Simul. 2017, 49, 48–62. [Google Scholar] [CrossRef]
- Wang, C.; Agarwal, R.P. Almost periodic dynamics for impulsive delay neural networks of a general type on almost periodic time scales. Commun. Nonlinear Sci. Numer. Simul. 2016, 36, 238–251. [Google Scholar] [CrossRef]
- Wang, C.; Agarwal, R.P. Almost periodic solution for a new type of neutral impulsive stochastic Lasota–Wazewska timescale model. Appl. Math. Lett. 2017, 70, 58–65. [Google Scholar] [CrossRef]
- Berg, I.D.; Wilansky, A. Periodic, almost-periodic, and semiperiodic sequences. Mich. Math. J. 1962, 9, 363–368. [Google Scholar] [CrossRef]
- Farkas, M. Dynamical Models in Biology; Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- Murray, J.D. Mathematical Biology; Springer: Berlin, Germany, 1993. [Google Scholar]
- Andres, J.; Pennequin, D. On Stepanov almost-periodic oscillations and their discretizations. J. Differ. Equ. Appl. 2012, 18, 1665–1682. [Google Scholar] [CrossRef]
- Bodine, S.; Lutz, D.A. Asymptotic Integration of Differential and Difference Equations; LNM 2129; Springer: Berlin, Germany, 2015. [Google Scholar]
- Palmer, K.J. A finite-time condition for exponential dichotomy. J. Differ. Equ. Appl. 2011, 17, 221–234. [Google Scholar] [CrossRef]
- Alonso, A.I.; Hong, J.; Obaya, R. Exponential dichotomy and trichotomy for difference equations. Comput. Math. Appl. 1999, 38, 41–49. [Google Scholar] [CrossRef]
- Dannan, F.; Elaydi, S.; Liu, P. Periodic solutions of difference equations. J. Differ. Equ. Appl. 2000, 6, 203–232. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andres, J.; Pennequin, D. Note on Limit-Periodic Solutions of the Difference Equation xt + 1 − [h(xt) + λ]xt = rt, λ > 1. Axioms 2019, 8, 19. https://doi.org/10.3390/axioms8010019
Andres J, Pennequin D. Note on Limit-Periodic Solutions of the Difference Equation xt + 1 − [h(xt) + λ]xt = rt, λ > 1. Axioms. 2019; 8(1):19. https://doi.org/10.3390/axioms8010019
Chicago/Turabian StyleAndres, Jan, and Denis Pennequin. 2019. "Note on Limit-Periodic Solutions of the Difference Equation xt + 1 − [h(xt) + λ]xt = rt, λ > 1" Axioms 8, no. 1: 19. https://doi.org/10.3390/axioms8010019
APA StyleAndres, J., & Pennequin, D. (2019). Note on Limit-Periodic Solutions of the Difference Equation xt + 1 − [h(xt) + λ]xt = rt, λ > 1. Axioms, 8(1), 19. https://doi.org/10.3390/axioms8010019