New Bell–Sheffer Polynomial Sets
Abstract
:1. Introduction
2. Sheffer Polynomials
3. New Bell–Sheffer Polynomial Sets
3.1. The Polynomials
3.2. Recurrence Relation for the
3.3. Generating Function’s PDEs
3.4. Shift Operators
3.5. Differential Equation for the
3.6. First Few Values of the
4. Iterated Bell–Sheffer Polynomial Sets
4.1. Differential Equation for the
4.2. First Few Values of the
5. The General Case
Differential Equation for the
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bretti, G.; Natalini, P.; Ricci, P.E. A new set of Sheffer-Bell polynomials and logarithmic numbers. Georgian Math. J. 2018. in print. [Google Scholar]
- Ricci, P.E.; Natalini, P.; Bretti, G. Sheffer and Brenke polynomials associated with generalized Bell numbers. Jnanabha Vijnana Parishad India 2017, 47, 337–352. [Google Scholar]
- Sheffer, I.M. Some properties of polynomials sets of zero type. Duke Math. J. 1939, 5, 590–622. [Google Scholar] [CrossRef]
- Brenke, W.C. On generating functions of polynomial systems. Am. Math. Mon. 1945, 52, 297–301. [Google Scholar] [CrossRef]
- Natalini, P.; Ricci, P.E. Remarks on Bell and higher order Bell polynomials and numbers. Cogent Math. 2016, 3, 1–15. [Google Scholar] [CrossRef]
- Bernardini, A.; Natalini, P.; Ricci, P.E. Multi-dimensional Bell polynomials of higher order. Comput. Math. Appl. 2005, 50, 1697–1708. [Google Scholar] [CrossRef]
- Natalini, P.; Ricci, P.E. An extension of the Bell polynomials. Comput. Math. Appl. 2004, 47, 719–725. [Google Scholar] [CrossRef]
- Sloane, N.J.A. The On-Line Encyclopedia of Integer Sequences. 2016. Available online: http://oeis.org (accessed on 24 May 2018).
- Bell, E.T. Exponential polynomials. Ann. Math. 1934, 35, 258–277. [Google Scholar] [CrossRef]
- Bell, E.T. The Iterated Exponential Integers. Ann. Math. 1938, 39, 539–557. [Google Scholar] [CrossRef]
- Qi, F.; Niu, D.W.; Lim, D.; Guo, B.N. Some Properties and an Application of Multivariate Exponential Polynomials. HAL Archives, 2018. Available online: https://hal.archives-ouvertes.fr/hal-01745173 (accessed on 13 September 2018).
- Qi, F. Integral representations for multivariate logarithmic potentials. J. Comput. Appl. Math. 2018, 336, 54–62. [Google Scholar] [CrossRef]
- Qi, F. On multivariate logarithmic polynomials and their properties. Indag. Math. 2018, 336. [Google Scholar] [CrossRef]
- Costabile, F.A.; Longo, E. A new recurrence relation and related determinantal form for Binomial type polynomial sequences. Mediterr. J. Math. 2016, 13, 4001–4017. [Google Scholar] [CrossRef]
- Yang, Y.; Youn, H. Appell polynomial sequences: a linear algebraic approach. JP J. Algebra Number Theory Appl. 2009, 13, 65–98. [Google Scholar]
- Yang, S.L. Recurrence relations for Sheffer sequences. Linear Algebra Appl. 2012, 437, 2986–2996. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. On λ-Bell polynomials associated with umbral calculus. Russ. J. Math. Phys. 2017, 24, 69–78. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Jang, G.-W. Some formulas of ordered Bell numbers and polynomials arising from umbral calculus. Proc. Jangjeon Math. Soc. 2017, 20, 659–670. [Google Scholar]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Ellis Horwood: Chichester, UK, 1984. [Google Scholar]
- Roman, S.M. The Umbral Calculus; Academic Press: New York, NY, USA, 1984. [Google Scholar]
- Boas, R.P.; Buck, R.C. Polynomial Expansions of Analytic Functions; Springer: Berlin/Heidelberg, Germany; Gottingen, Germany; New York, NY, USA, 1958. [Google Scholar]
- Natalini, P.; Ricci, P.E. Higher order Bell polynomials and the relevant integer sequences. Appl. Anal. Discret. Math. 2017, 11, 327–339. [Google Scholar] [CrossRef]
- Steffensen, J.F. The poweroid, an extension of the mathematical notion of power. Acta Math. 1941, 73, 333–366. [Google Scholar] [CrossRef]
- Dattoli, G. Hermite-Bessel and Laguerre-Bessel functions: A by-product of the monomiality principle. In Advanced Special Functions and Applications, Proceedings of the Melfi School on Advanced Topics in Mathematics and Physics, Melfi, Italy, 9–12 May 1999; Cocolicchio, D., Dattoli, G., Srivastava, H.M., Eds.; Aracne Editrice: Rome, Italy, 2000; pp. 147–164. [Google Scholar]
- Cheikh, Y.B. Some results on quasi-monomiality. Appl. Math. Comput. 2003, 141, 63–76. [Google Scholar]
- Dattoli, G.; Ricci, P.E.; Srivastava, H.M. (Eds.) Advanced Special Functions and Related Topics in Probability and in Differential Equations. In Applied Mathematics and Computation, Proceedings of the Melfi School on Advanced Topics in Mathematics and Physics, Melfi, Italy, 24–29 June 2001; Aracne Editrice: Rome, Italy, 2000; Volume 141, pp. 1–230. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natalini, P.; Ricci, P.E. New Bell–Sheffer Polynomial Sets. Axioms 2018, 7, 71. https://doi.org/10.3390/axioms7040071
Natalini P, Ricci PE. New Bell–Sheffer Polynomial Sets. Axioms. 2018; 7(4):71. https://doi.org/10.3390/axioms7040071
Chicago/Turabian StyleNatalini, Pierpaolo, and Paolo Emilio Ricci. 2018. "New Bell–Sheffer Polynomial Sets" Axioms 7, no. 4: 71. https://doi.org/10.3390/axioms7040071
APA StyleNatalini, P., & Ricci, P. E. (2018). New Bell–Sheffer Polynomial Sets. Axioms, 7(4), 71. https://doi.org/10.3390/axioms7040071