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Abstract: In recent papers, new sets of Sheffer and Brenke polynomials based on higher order Bell
numbers, and several integer sequences related to them, have been studied. The method used
in previous articles, and even in the present one, traces back to preceding results by Dattoli and
Ben Cheikh on the monomiality principle, showing the possibility to derive explicitly the main
properties of Sheffer polynomial families starting from the basic elements of their generating functions.
The introduction of iterated exponential and logarithmic functions allows to construct new sets
of Bell–Sheffer polynomials which exhibit an iterative character of the obtained shift operators
and differential equations. In this context, it is possible, for every integer r, to define polynomials
of higher type, which are linked to the higher order Bell-exponential and logarithmic numbers
introduced in preceding papers. Connections with integer sequences appearing in Combinatorial
analysis are also mentioned. Naturally, the considered technique can also be used in similar
frameworks, where the iteration of exponential and logarithmic functions appear.

Keywords: Sheffer polynomials; generating functions; monomiality principle; shift operators;
combinatorial analysis

1. Introduction

In recent articles [1,2], new sets of Sheffer [3] and Brenke [4] polynomials, based on higher order
Bell numbers [2,5–7], have been studied. Furthermore, several integer sequences associated [8] with the
considered polynomials sets both of exponential [9,10] and logarithmic type have been introduced [1].

It is worth noting that exponential and logarithmic polynomials have been recently studied in the
multidimensional case [11–13].

In this article, new sets of Bell–Sheffer polynomials are considered and some particular cases
are analyzed.

It is worth noting that the Sheffer A-type 0 polynomial sets have been also approached with
elementary methods of linear algebra (see, e.g., [14–16] and the references therein).

Connection with umbral calculus has been recently emphasized (see, e.g., [17,18] and the
references therein).

2. Sheffer Polynomials

The Sheffer polynomials {sn(x)} are introduced [3] by means of the exponential generating
function [19] of the type:

A(t) exp(xH(t)) =
∞

∑
n=0

sn(x)
tn

n!
, (1)
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where

A(t) =
∞

∑
n=0

an
tn

n!
, (a0 6= 0) ,

H(t) =
∞

∑
n=0

hn
tn

n!
, (h0 = 0) .

(2)

According to a different characterization (see [20], p. 18), the same polynomial sequence can be
defined by means of the pair (g(t), f (t)), where g(t) is an invertible series and f (t) is a delta series:

g(t) =
∞

∑
n=0

gn
tn

n!
, (g0 6= 0) ,

f (t) =
∞

∑
n=0

fn
tn

n!
, ( f0 = 0, f1 6= 0) .

(3)

Denoting by f−1(t) the compositional inverse of f (t) (i.e., such that f
(

f−1(t)
)
= f−1 ( f (t)) = t),

the exponential generating function of the sequence {sn(x)} is given by

1
g[ f−1(t)]

exp
(

x f−1(t)
)
=

∞

∑
n=0

sn(x)
tn

n!
, (4)

so that

A(t) =
1

g[ f−1(t)]
, H(t) = f−1(t) . (5)

When g(t) ≡ 1, the Sheffer sequence corresponding to the pair (1, f (t)) is called the associated
Sheffer sequence {σn(x)} for f (t), and its exponential generating function is given by

exp
(

x f−1(t)
)
=

∞

∑
n=0

σn(x)
tn

n!
. (6)

A list of known Sheffer polynomial sequences and their associated ones can be found in [21].

3. New Bell–Sheffer Polynomial Sets

We introduce, for shortness, the following compact notation.
Put, by definition:

E0(t) := exp(t)− 1,
E1(t) := E0(E0(t)) = exp(exp(t)− 1)− 1
. . . . . . . . .
Er(t) := E0(Er−1(t)) = exp(. . . exp(exp(t)− 1)− 1) · · · − 1 [(r + 1)− times exp] ,

and in a similar way:

Λ0(t) := log(t + 1)
Λ1(t) := Λ0(Λ0(t)) = log(log(t + 1) + 1)
. . . . . . . . .
Λr(t) := Λ0(Λr−1(t)) = log (log (. . . (log(t + 1) + 1) . . . ) + 1) , [(r + 1)− times log] .
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Remark 1. Note that, for all integers r, k, h,

Er(Λr(t)) = t , Λr(Er(t)) = t ,

(if k > h) Ek(Λh(t)) = Ek−h−1(t) , Eh(Λk(t)) = Λk−h−1(t) ,

(if k > h) Λk(Eh(t)) = Λk−h−1(t) , Λh(Ek(t)) = Ek−h−1(t) ,

eEr(t) = Er+1(t) + 1 , eΛr(t) = Λr−1(t) + 1 .

Remark 2. Note that the coefficients of the Taylor expansion of E1(t) are given by the Bell numbers bn = b[1]n

E1(t) =
∞

∑
n=1

b[1]n
tn

n!
,

and, in general, the coefficients of the Taylor expansion of Er(t) are given by the higher order Bell numbers b[r]n

Er(t) =
∞

∑
n=1

b[r]n
tn

n!
.

The higher order Bell numbers, also known as higher order exponential numbers, have been considered
in [5,7,22], and used in [2] in the framework of Brenke and Sheffer polynomials.

Remark 3. Note that the coefficients of the Taylor expansion of Λ0(t) are given by the logarithmic numbers
l[1]n = (−1)n−1(n− 1)!

Λ0(t) =
∞

∑
n=1

l[1]n
tn

n!
=

∞

∑
n=1

(−1)n−1(n− 1)!
tn

n!
,

and, in general, the coefficients of the Taylor expansion of Λr−1(t) are given by the higher order logarithmic
numbers l[r]n

Λr−1(t) =
∞

∑
n=1

l[r]n
tn

n!
.

The higher order logarithmic numbers, which are the counterpart of the higher order Bell (exponential)
numbers, have been considered in [1], and used there in the framework of new sets of Sheffer polynomials.

3.1. The Polynomials E (1)k (x)

Therefore, we consider the Sheffer polynomials, defined through their generating function,
by putting

A(t) = E1(t) + 1 = eE0(t), H(t) = E0(t) ,

G(t, x) = exp [(1 + x)E0(x)] =
∞

∑
k=0
E (1)k (x)

tk

k!
.

(7)
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3.2. Recurrence Relation for the E (1)k (x)

Theorem 1. For any k ≥ 0, the polynomials E (1)k (x) satisfy the following recurrence relation:

E (1)k+1(x) =
k

∑
h=0

(
k
h

)
(1 + x) E (1)h (x) . (8)

Proof. Differentiating G(t, x) with respect to t , we have

∂G(t, x)
∂t

= G(t, x) et (1 + x) , (9)

and therefore

∞

∑
k=0

(1 + x) E (1)k (x)
tk

k!

∞

∑
k=0

tk

k!
=

∞

∑
k=0
E (1)k+1(x)

tk

k!
,

i.e.,

∞

∑
k=0

k

∑
h=0

(
k
h

)
(1 + x) E (1)h (x)

tk

k!
=

∞

∑
k=0
E (1)k+1(x)

tk

k!

so that the recurrence relation (8) follows.

3.3. Generating Function’s PDEs

Theorem 2. The generating function (7)2 satisfies the homogeneous linear PDEs:

(1− e−t)
∂G(t, x)

∂t
= (1 + x)

∂G(t, x)
∂x

, (10)

∂G(t, x)
∂t

=
∂G(t, x)

∂x
+ G(t, x)(1 + xet) , (11)

∂G(t, x)
∂t

= (1 + x)
[

∂G(t, x)
∂x

+ G(t, x)
]

. (12)

Proof. Differentiating G(t, x) with respect to x , we have

∂G(t, x)
∂x

= G(t, x) (et − 1) . (13)

By taking the ratio between the members of Equations (9) and (13), we find Equation (10).
The other ones easily follows by elementary algebraic manipulations.

3.4. Shift Operators

We recall that a polynomial set {pn(x)} is called quasi-monomial if and only if there exist two
operators P̂ and M̂ such that

P̂ (pn(x)) = npn−1(x) , M̂ (pn(x)) = pn+1(x) , (n = 1, 2, . . . ). (14)

P̂ is called the derivative operator and M̂ the multiplication operator, as they act in the same way of
classical operators on monomials.
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This definition traces back to a paper by Steffensen [23], recently improved by Dattoli [24] and
widely used in several applications.

Ben Cheikh [25] proved that every polynomial set is quasi-monomial under the action of suitable
derivative and multiplication operators. In particular, in the same article (Corollary 3.2), the following
result is proved.

Theorem 3. Let (pn(x)) denote a Boas–Buck polynomial set, i.e., a set defined by the generating function

A(t)ψ(xH(t)) =
∞

∑
n=0

pn(x)
tn

n!
, (15)

where

A(t) =
∞

∑
n=0

antn , (a0 6= 0) ,

ψ(t) =
∞

∑
n=0

γntn , (γn 6= 0 ∀n) ,

(16)

with ψ(t) not a polynomial, and lastly

H(t) =
∞

∑
n=0

hn tn+1 , (h0 6= 0) . (17)

Let σ ∈ Λ(−) the lowering operator defined by

σ(1) = 0 , σ(xn) =
γn−1

γn
xn−1 , (n = 1, 2, . . . ). (18)

Put

σ−1(xn) =
γn+1

γn
xn+1 (n = 0, 1, 2, . . . ). (19)

Denoting, as before, by f (t) the compositional inverse of H(t), the Boas–Buck polynomial set {pn(x)} is
quasi-monomial under the action of the operators

P̂ = f (σ) , M̂ =
A′[ f (σ)]
A[ f (σ)]

+ xDx H′[ f (σ)]σ−1 , (20)

where prime denotes the ordinary derivatives with respect to t.

Note that, in our case, we are dealing with a Sheffer polynomial set, so that since we have
ψ(t) = et, the operator σ defined by Equation (16) simply reduces to the derivative operator Dx.
Furthermore, we have:

f (t) = H−1(t) = Λ0(t) ,

A′(t)
A(t)

= et , H′(t) = et ,
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and, consequently,

f (σ) = Λ0(Dx) ,
A′[Λ0(Dx)]

A[Λ0(Dx)]
= Dx + 1 ,

H′[ f (σ)] = H′[Λ0(Dx)] = Dx + 1 .

Theorem 4. The Bell–Sheffer polynomials {E (1)k (x)} are quasi-monomial under the action of the operators

P̂ = Λ0(Dx) =
∞

∑
k=0

(−1)k+1 Dk
x

k
,

M̂ = (1 + x)(Dx + 1) .

(21)

3.5. Differential Equation for the E (1)k (x)

According to the results of monomiality principle [24], the quasi-monomial polynomials {pn(x)}
satisfy the differential equation

M̂P̂ pn(x) = n pn(x) . (22)

In the present case, recalling Equation (22), we have

Theorem 5. The Bell–Sheffer polynomials {E (1)k (x)} satisfy the differential equation

(1 + x)
n

∑
k=1

(−1)k+1

[
Dk+1

x + Dk
x

k!

]
E (1)n (x) = n E (1)n (x) . (23)

Proof. Equation (22), by using Equation (21), becomes

M̂P̂ E (1)n (x) = (1 + x) (Dx + 1)Λ0(Dx) E (1)n (x) =

= (1 + x) (Dx + 1)
n

∑
k=1

(−1)k+1 Dk
x

k!
E (1)n (x) = n E (1)n (x) ,

i.e.,

(1 + x)
∞

∑
k=1

(−1)k+1

[
Dk+1

x + Dk
x

k!

]
E (1)n (x) = n E (1)n (x) ,

and, furthermore, for any fixed n, the last series expansion reduces to a finite sum, with upper limit
n− 1, when it is applied to a polynomial of degree n because the last not vanishing term (for k = n− 1)
contains the derivative of order n.
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3.6. First Few Values of the E (1)k (x)

Here, we show the first few values for the Bell–Sheffer polynomials E (1)k (x), defined by the
generating function (7)2

E (1)0 (x) = 1,

E (1)1 (x) = x + 1,

E (1)2 (x) = x2 + 3x + 2,

E (1)3 (x) = x3 + 6x2 + 10x + 5,

E (1)4 (x) = x4 + 10x3 + 31x2 + 37x + 15,

E (1)5 (x) = x5 + 15x4 + 75x3 + 160x2 + 151x + 52.

Further values can be easily achieved by using Wolfram Alpha c© (2009, Wolfram Research,
Champaign, IL, USA).

Remark 4. Note that the numerical values E (1)k (0) of the considered Bell–Sheffer polynomials

(1, 1, 2, 5, 15, 52, 203, 877, . . . )

appears in the Encyclopedia of Integer Sequences [8] under A000110: Bell or exponential numbers: number of
ways to partition a set of n labeled elements.

The same sequence also appears under A164864, A164863, A276723, A276724, A276725, A276726,
A287278, A287279, A287280.

4. Iterated Bell–Sheffer Polynomial Sets

Here, we iterate the procedure introduced in Section 3, by considering the Sheffer polynomial sets
defined by putting

A(t) = E2(t) + 1 = eE1(t), H(t) = E1(t) ,

G(t, x) = exp [(1 + x)E1(x)] =
∞

∑
k=0
E (2)k (x)

tk

k!
.

(24)

We find:

f (t) = H−1(t) = Λ1(t) ,

A′(t)
A(t)

= H′(t) = [E1(t) + 1] et = [E1(t) + 1] [E0(t) + 1] ,

and, consequently,

f (σ) = Λ1(Dx) , H′[ f (σ)] = H′[Λ1(Dx)] = [Dx + 1] [Λ0(Dx) + 1] ,

A′[Λ1(Dx)]

A[Λ1(Dx)]
= [E1(Λ1(Dx)) + 1] eΛ1(Dx) = (Dx + 1) [Λ0(Dx) + 1] .

Theorem 6. The Bell–Sheffer polynomials {E (2)k (x)} are quasi-monomial under the action of the operators

P̂ = Λ1(Dx) ,

M̂ = (1 + x) (Dx + 1) [Λ0(Dx) + 1] .

(25)

http://oeis.org/A000110
http://oeis.org/A164864
http://oeis.org/A164863
http://oeis.org/A276723
http://oeis.org/A276724
http://oeis.org/A276725
http://oeis.org/A276726
http://oeis.org/A287278
http://oeis.org/A287279
http://oeis.org/A287280
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4.1. Differential Equation for the E (2)k (x)

According to the results of monomiality principle [24,26], the quasi-monomial polynomials
{pn(x)} satisfy the differential equation

M̂P̂ pn(x) = n pn(x) . (26)

In the present case, recalling Equation (19), we have

Theorem 7. The Bell–Sheffer polynomials {E (2)k (x)} satisfy the differential equation

(1 + x) (Dx + 1) [Λ0(Dx) + 1] Λ1(Dx) E (2)n (x) = n E (2)n (x) . (27)

4.2. First Few Values of the E (2)k (x)

Here, we show the first few values for the Bell–Sheffer polynomials E (2)k (x), defined by the
generating function (7)2

E (2)0 (x) = 1,

E (2)1 (x) = x + 1,

E (2)2 (x) = x2 + 4x + 3,

E (2)3 (x) = x3 + 9x2 + 20x + 12,

E (2)4 (x)) = x4 + 16x3 + 74x2 + 119x + 60,

E (2)5 (x) = x5 + 25x4 + 200x3 + 635x2 + 817x + 358.

Further values can be easily achieved by using Wolfram Alpha c©.

Remark 5. Note that the numerical values E (2)k (0) of the considered Bell–Sheffer polynomials

(1, 1, 3, 12, 60, 358, 2471, 19302, . . . )

appear in the Encyclopedia of Integer Sequences under A000258: McLaurin coefficients of the function E2(x).

5. The General Case

In general, by putting

A(t) = Er(t) + 1 = eEr−1(t), H(t) = Er−1(t) ,

G(t, x) = exp [(1 + x)Er−1(t)] =
∞

∑
k=0
E (r)k (x)

tk

k!
,

(28)

we find:

f (t) = H−1(t) = Λr−1(t) ,

A′(t)
A(t)

= H′(t) =
r−1

∏
`=1

[E`(t) + 1] et =
r−1

∏
`=0

[E`(t) + 1] ,

http://oeis.org/A000258
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and, consequently,

f (σ) = Λr−1(Dx) ,
A′[Λr−1(Dx)]

A[Λr−1(Dx)]
=

r−1

∏
`=0

[E`(Λr−1(Dx)) + 1] ,

H′[ f (σ)] = H′[Λr−1(Dx)] =
r−1

∏
`=0

[E`(Λr−1(Dx)) + 1] .

Recalling Remark 3.1, we find

E`(Λr−1(Dx)) = Λr−`−2(Dx) ,

r−1

∏
`=0

[E`(Λr−1(Dx)) + 1] = (Dx + 1)
r−2

∏
k=0

[Λk(Dx) + 1] ,

so that we have the theorem:

Theorem 8. The Bell–Sheffer polynomials {E (r)k (x)} are quasi-monomial under the action of the operators

P̂ = Λr−1(Dx) ,

M̂ = (1 + x) (Dx + 1)
r−2

∏
k=0

[Λk(Dx) + 1] .
(29)

Differential Equation for the E (r)k (x)

According to the results of monomiality principle [24], the quasi-monomial polynomials {pn(x)}
satisfy the differential equation

M̂P̂ pn(x) = n pn(x) . (30)

In the present case, recalling Equation (19), we have

Theorem 9. The Bell–Sheffer polynomials {E (r)k (x)} satisfy the differential equation

(1 + x) (Dx + 1)
r−2

∏
k=0

[Λk(Dx) + 1]Λr−1(Dx) E (r)n (x) = n E (r)n (x) . (31)

6. Conclusions

By introducing iterated exponential and logarithmic functions, we have shown how to construct
new sets of Bell-Sheffer polynomials which exhibit an iterative character. We have found their main
properties by using the monomiality property and a general result by Y. Ben Cheikh which gives
explicitly the derivative and multiplication operators for polynomials of Sheffer type. The tools we
used are internal to Sheffer’s polynomial theory and do not use external techniques. In our opinion
the demonstrated properties (in particular the differential equations for polynomials of higher order)
could hardly be achieved by other methods.

Author Contributions: The authors declare to have both contributed to the final version of this article.
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