The SIC Question: History and State of Play
Abstract
:1. Introduction
2. Generating SICs with Groups
3. Historical Overview
4. How to Search for SICs Numerically
5. Zauner Symmetry
6. Exhaustive Searches
7. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zauner, G. Quantendesigns. Grundzüge einer nichtkommutativen Designtheorie [Quantum designs: Foundations of a noncommutative design theory]. Ph.D. Thesis, University of Vienna, Vienna, Austria, 1999. Published in English translation as Int. J. Quantum Inf. 2011, 9, 445–508. [Google Scholar]
- Caves, C.M. Symmetric Informationally Complete POVMs. 2002. Available online: http://info.phys.unm.edu/~caves/reports/infopovm.pdf (accessed on 17 July 2017).
- Renes, J.M.; Blume-Kohout, R.; Scott, A.J.; Caves, C.M. Symmetric Informationally Complete Quantum Measurements. J. Math. Phys. 2004, 45, 2171–2180. [Google Scholar] [CrossRef]
- Scott, A.J.; Grassl, M. Symmetric informationally complete positive-operator-valued measures: A new computer study. J. Math. Phys. 2010, 51, 042203. [Google Scholar] [CrossRef]
- Appleby, M.; Flammia, S.; McConnell, G.; Yard, J. Generating Ray Class Fields of Real Quadratic Fields via Complex Equiangular Lines. arXiv 2016, arXiv:1604.06098. [Google Scholar]
- Bengtsson, I. The Number behind the Simplest SIC-POVM. Found. Phys. 2016, arXiv:1611.09087. [Google Scholar] [CrossRef]
- Appleby, M.; Flammia, S.; McConnell, G.; Yard, J. SICs and Algebraic Number Theory. Found. Phys. 2017, arXiv:1701.05200. [Google Scholar] [CrossRef]
- Appleby, M.; Chien, T.Y.; Flammia, S.; Waldron, S. Constructing Exact Symmetric Informationally Complete Measurements from Numerical Solutions. arXiv 2017, arXiv:1703.05981. [Google Scholar]
- Stacey, B.C. Sporadic SICs and the Normed Division Algebras. Found. Phys. 2017, arXiv:1605.0142647, 1–5. [Google Scholar]
- Appleby, D.M.; Flammia, S.T.; Fuchs, C.A. The Lie Algebraic Significance of Symmetric Informationally Complete Measurements. J. Math. Phys. 2011, arXiv:1001.000452, 022202. [Google Scholar] [CrossRef]
- Appleby, D.M.; Fuchs, C.A.; Zhu, H. Group theoretic, Lie algebraic and Jordan algebraic formulations of the SIC existence problem. Quantum Inf. Comput. 2015, arXiv:1312.055515, 61–94. [Google Scholar]
- Zhu, H. Super-symmetric informationally complete measurements. Ann. Phys. 2015, arXiv:1412.1099362, 311–326. [Google Scholar]
- Stacey, B.C. Geometric and Information-Theoretic Properties of the Hoggar Lines. arXiv 2016, arXiv:1609.03075. [Google Scholar]
- Fuchs, C.A. QBism, the Perimeter of Quantum Bayesianism. arXiv 2010, arXiv:1003.5209. [Google Scholar]
- Tabia, G.N.M. Experimental scheme for qubit and qutrit symmetric informationally complete positive operator-valued measurements using multiport devices. Phys. Rev. A 2012, arXiv:1207.603586, 062107. [Google Scholar]
- Tabia, G.N.M.; Appleby, D.M. Exploring the geometry of qutrit state space using symmetric informationally complete probabilities. Phys. Rev. A 2013, 88, 012131. [Google Scholar] [CrossRef]
- Fuchs, C.A.; Schack, R. Quantum-Bayesian coherence. Rev. Mod. Phys. 2013, arXiv:1301.327485, 1693–1715. [Google Scholar]
- Zhu, H. Quantum State Estimation and Symmetric Informationally Complete POMs. Ph.D. Thesis, National University of Singapore, Singapore, 2012. [Google Scholar]
- Graydon, M.A.; Appleby, D.M. Quantum conical designs. J. Phys. A 2016, arXiv:1507.0532349, 085301. [Google Scholar]
- Zhu, H. Quasiprobability Representations of Quantum Mechanics with Minimal Negativity. Phys. Rev. Lett. 2016, arXiv:1604.06974117, 120404. [Google Scholar] [PubMed]
- Szymusiak, A.; Słomczyński, W. Informational power of the Hoggar symmetric informationally complete positive operator-valued measure. Phys. Rev. A 2015, arXiv:1512.0173594, 012122. [Google Scholar]
- Appleby, M.; Fuchs, C.A.; Stacey, B.C.; Zhu, H. Introducing the Qplex: A Novel Arena for Quantum Theory. arXiv 2016, arXiv:1612.03234. [Google Scholar]
- Fuchs, C.A.; Stacey, B.C. QBism: Quantum Theory as a Hero’s Handbook. arXiv 2016, arXiv:1612.07308. [Google Scholar]
- Scott, A.J. SICs: Extending the list of solutions. arXiv 2017, arXiv:1703.03993. [Google Scholar]
- Chien, T.Y. Equiangular Lines, Projective Symmetries and Nice Error Frames. Ph.D. Thesis, University of Auckland, Auckland, New Zealand, 2015. [Google Scholar]
- Grassl, M.; Scott, A. Fibonacci-Lucas SIC-POVMs. arXiv 2017, arXiv:1707.02944. [Google Scholar]
- DeBrota, J.B.; Fuchs, C.A.; Hoang, M.C.; Stacey, B.C. QBism Research Group. 2017. Available online: http://www.physics.umb.edu/Research/QBism (accessed on 17 July 2017).
- Du, J.; Sun, M.; Peng, X.; Durt, T. Realization of Entanglement Assisted Qubit-covariant Symmetric Informationally Complete Positive Operator Valued Measurements. Phys. Rev. A 2006, 74, 042341. [Google Scholar] [CrossRef]
- Durt, T.; Kurtsiefer, C.; Lamas-Linares, A.; Ling, A. Wigner Tomography of Two-Qubit States and Quantum Cryptography. Phys. Rev. A 2008, 78, 042338. [Google Scholar] [CrossRef]
- Medendorp, Z.E.D.; Torres-Ruiz, F.A.; Shalm, L.K.; Tabia, G.N.M.; Fuchs, C.A.; Steinberg, A.M. Experimental characterization of qutrits using symmetric informationally complete positive operator-valued measurements. Phys. Rev. A 2011, arXiv:1006.490583, 051801(R). [Google Scholar]
- Pimenta, W.M.; Marques, B.; Maciel, T.O.; Vianna, R.O.; Delgado, A.; Saavedra, C.; Pádua, S. Minimum tomography of two entangled qutrits using local measurements of one-qutrit symmetric informationally complete positive operator-valued measure. Phys. Rev. A 2013, arXiv:1312.111988, 012112. [Google Scholar]
- Bian, Z.; Li, J.; Qin, H.; Zhan, X.; Xue, P. Experimental realization of a single qubit SIC POVM on via a one-dimensional photonic quantum walk. arXiv 2014, arXiv:1412.2355. [Google Scholar]
- Zhao, Y.Y.; Yu, N.K.; Kurzyński, P.; Xiang, G.Y.; Li, C.F.; Guo, G.C. Experimental realization of generalized qubit measurements based on quantum walks. Phys. Rev. A 2015, arXiv:1501.0509691, 042101. [Google Scholar]
- Bent, N.; Qassim, H.; Tahir, A.A.; Sych, D.; Leuchs, G.; Sánchez-Soto, L.L.; Karimi, E.; Boyd, R.W. Experimental Realization of Quantum Tomography of Photonic Qudits via Symmetric Informationally Complete Positive Operator-Valued Measures. Phys. Rev. X 2015, 5, 041006. [Google Scholar] [CrossRef] [Green Version]
- Sosa-Martinez, H.; Lysne, N.K.; Baldwin, C.H.; Kalev, A.; Deutsch, I.H.; Jessen, P.S. Experimental study of optimal measurements for quantum state tomography. arXiv 2017, arXiv:1706.03137. [Google Scholar]
- Scott, A.J. Tight Informationally Complete Quantum Measurements. J. Phys. A 2006, arXiv:quant-ph/060404939, 13507–13530. [Google Scholar]
- Et-Taoui, B. Complex Conference Matrices, Complex Hadamard Matrices and Complex Equiangular Tight Frames. In Convexity and Discrete Geometry Including Graph Theory; Adiprasito, K., Bárány, I., Vilcu, C., Eds.; Springer: Basel, Switzerland, 2016; pp. 181–191. [Google Scholar]
- Kovačević, J.; Chebira, A. Life Beyond Bases: The Advent of Frames (Part 1). IEEE Signal Process. Mag. 2007, 24, 86–104. [Google Scholar] [CrossRef]
- Kovačević, J.; Chebira, A. Life Beyond Bases: The Advent of Frames (Part 2). IEEE Signal Process. Mag. 2007, 24, 115–125. [Google Scholar] [CrossRef]
- DeBrota, J.B.; Fuchs, C.A. Negativity Bounds for Weyl–Heisenberg Quasiprobability Representations. Found. Phys. 2017, arXiv:1703.08272. [Google Scholar] [CrossRef]
- Hughston, L.P.; Salamon, S.M. Surveying points in the complex projective plane. Adv. Math. 2016, arXiv:1410.5862286, 1017–1052. [Google Scholar] [CrossRef]
- Weyl, H. The Theory of Groups and Quantum Mechanics; Dover: Mineola, NY, USA, 1931. [Google Scholar]
- Scholz, E. Introducing groups into quantum theory (1926–1930). Hist. Math. 2006, arXiv:math/040957133, 440–490. [Google Scholar]
- Scholz, E. Weyl entering the ‘new’ quantum mechanics discourse. In Proceedings of the Conference on the History of Quantum Physics, Berlin, Germany, 2–6 July 2007; Volume 2. [Google Scholar]
- Fuchs, C.A. My Struggles with the Block Universe. arXiv 2014, arXiv:1405.2390. [Google Scholar]
- Gottesman, D. The Heisenberg representation of quantum computers. In Group22: Proceedings of the XXII International Colloquium on Group Theoretical Methods in Physics; Corney, S.P., Delbourgo, R., Jarvis, P.D., Eds.; International Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Zhu, H. SIC POVMs and Clifford Groups in Prime Dimensions. J. Phys. A 2010, arXiv:1003.359143, 305305. [Google Scholar]
- Hoggar, S.G. Two quaternionic 4-polytopes. In The Geometric Vein: The Coxeter Festschrift; Davis, C., Grünbaum, B., Sherk, F.A., Eds.; Springer: New York, NY, USA, 1981. [Google Scholar]
- Hoggar, S.G. 64 lines from a quaternionic polytope. Geom. Dedicata 1998, 69, 287–289. [Google Scholar] [CrossRef]
- Hughston, L. d = 3 SIC-POVMs and Elliptic Curves. PIRSA Video Lecture 2007. PIRSA:07100040. [Google Scholar]
- Dang, H.B.; Blanchfield, K.; Bengtsson, I.; Appleby, D.M. Linear Dependencies in Weyl–Heisenberg Orbits. Quantum Inf. Process. 2013, arXiv:1211.021512, 3449–3475. [Google Scholar]
- Coxeter, H.S.M. Regular Complex Polytopes, 2nd ed.; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Stacey, B.C. SIC-POVMs and Compatibility among Quantum States. Mathematics 2016, arXiv:1404.37744, 36. [Google Scholar]
- Coxeter, H.S.M. The polytope 221 whose twenty-seven vertices correspond to the lines on the general cubic surface. Am. J. Math. 1940, arXiv:237146662, 457–486. [Google Scholar]
- Baez, J.C. 27 Lines on a Cubic Surface. 2016. Available online: http://blogs.ams.org/visualinsight/2016/02/15/27-lines-on-a-cubic-surface/ (accessed on 17 July 2017).
- Delsarte, P.; Goethels, J.M.; Seidel, J.J. Bounds for systems of lines and Jacobi polynomials. Philips Res. Rep. 1975, 30, 91–105. [Google Scholar]
- König, H.; Tomczak-Jaegermann, N. Norms of Minimal Projections. J. Funct. Analysis 1994, arXiv:math.FA/9211211119, 253–280. [Google Scholar]
- König, H. Cubature formulas on spheres. Math. Res. 1999, 107, 201–212. [Google Scholar]
- Et-Taoui, B. Equiangular lines in Cr. Indag. Math. 2000, 11, 201–207. [Google Scholar] [CrossRef]
- Et-Taoui, B. Equiangular lines in Cr (part II). Indag. Math. 2002, 13, 483–486. [Google Scholar] [CrossRef]
- Caves, C.M.; Fuchs, C.A.; Schack, R. Unknown quantum states: The quantum de Finetti representation. J. Math. Phys. 2002, arXiv:quant-ph/010408843, 4537–4559. [Google Scholar]
- Appleby, D.M.; Yadsan-Appleby, H.; Zauner, G. Galois automorphisms of a symmetric measurement. Quantum Inf. Comput. 2013, arXiv:1209.181313, 672–720. [Google Scholar]
- Renes, J.M. Frames, Designs, and Spherical Codes in Quantum Information Theory. Ph.D. Thesis, The University of New Mexico, Albuquerque, NM, USA, 2004. [Google Scholar]
- Khatirinejad, M. Regular Structures of Lines in Complex Spaces. Ph.D. Thesis, Simon Fraser University, Vancouver, BC, Canada, 2008. [Google Scholar]
- Yadsan-Appleby, H. Gaussian and Covariant Processes In Discrete And Continuous Variable Quantum Information. Ph.D. Thesis, University College London, London, UK, 2012. [Google Scholar]
- Tabia, G.N.M. Geometry of Quantum States from Symmetric Informationally Complete Probabilities. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2013. [Google Scholar]
- Andersson, D. An Enthusiast’s Guide to SICs in Low Dimensions. Master’s Thesis, Stockholm University, Stockholm, Sweden, 2014. [Google Scholar]
- Blanchfield, K. Geometry and Foundations of Quantum Mechanics. Ph.D. Thesis, Stockholm University, Stockholm, Sweden, 2014. [Google Scholar]
- Dang, H.B. Studies of Symmetries That Give Special Quantum States the “Right to Exist”. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2015. [Google Scholar]
- Stacey, B.C. Multiscale Structure in Eco-Evolutionary Dynamics. Ph.D. Thesis, Brandeis University, Waltham, MA, USA, 2015. [Google Scholar]
- Zhu, H. Tomographic and Lie algebraic significance of generalized symmetric informationally complete measurements. Phys. Rev. A 2014, arXiv:1408.056090, 032309. [Google Scholar]
- Appleby, M. Galois calculations using Magma. PIRSA Video Lecture 2012. PIRSA:12020149. [Google Scholar]
- Graydon, M. Conical Designs and Categorical Jordan Algebraic Post-Quantum Theories. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2017. [Google Scholar]
- Van de Wetering, J. Quantum theory is a quasi-stochastic process theory. arXiv 2017, arXiv:1704.08525. [Google Scholar]
- Howard, S.D.; Calderbank, A.R.; Moran, W. The Finite Heisenberg–Weyl Groups in Radar and Communications. EURASIP J. Appl. Signal Process. 2006, 2006, 1–11. [Google Scholar] [CrossRef]
- Herman, M.A.; Strohmer, T. High-Resolution Radar via Compressed Sensing. IEEE Trans. Signal Process. 2009, 57, 2275–2284. [Google Scholar] [CrossRef]
- Balan, R.; Bodmann, B.G.; Casazza, P.G.; Edidin, D. Painless Reconstruction from Magnitudes of Frame Coefficients. J. Fourier Anal. Appl. 2009, 15, 488–501. [Google Scholar] [CrossRef]
- Mixon, D. Sparse Signal Processing with Frame Theory. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 2012. [Google Scholar]
- Hulek, K. Projective geometry of elliptic curves. In Algebraic Geometry—Open Problems; Ciliberto, C., Ghione, F., Orecchia, F., Eds.; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1983; Volume 997, pp. 228–266. [Google Scholar]
- Bengtsson, I. From SICs and MUBs to Eddington. In Quantum Groups, Quantum Foundations, and Quantum Information: A Festschrift for Tony Sudbery, York, 29–30 September 2008; IOP Publishing: Bristol, UK, 2010. [Google Scholar]
- Grassl, M. Computing equiangular lines in complex space. In Mathematical Methods in Computer Science: Essays in Memory of Thomas Beth; Calmet, J., Geiselmann, W., Müller-Quade, J., Eds.; Springer: Berlin, Germany, 2008; pp. 89–104. [Google Scholar]
- Khatirinejad, M. On Weyl–Heisenberg Orbits of Equiangular Lines. J. Algebraic Comb. 2008, 28, 333–349. [Google Scholar] [CrossRef]
- Wootters, W.K. Symmetric informationally complete measurements: Can we make big ones out of small ones? PIRSA Video Lecture 2009. PIRSA:09120023. [Google Scholar]
- McConnell, G. Some non-standard ways to generate SIC-POVMs in dimensions 2 and 3. arXiv 2014, arXiv:1402.7330. [Google Scholar]
- Jedwab, J.; Wiebe, A. A simple construction of complex equiangular lines. In Algebraic Design Theory and Hadamard Matrices; Springer: Cham, Switzerland, 2015; pp. 159–169. [Google Scholar]
- Bruzda, W.; Goyeneche, D.; Życzkowski, K. Quantum measurements with prescribed symmetry. arXiv 2017, arXiv:1704.04609. [Google Scholar]
- Bos, L.; Waldron, S. Some remarks on Heisenberg frames and sets of equiangular lines. N. Z. J. Math. 2007, 36, 113–137. [Google Scholar]
- Bodmann, B.G.; Casazza, P.G.; Edidin, D.; Balan, R. Frames for Linear Reconstruction without Phase. In Proceedings of the 42nd Annual Conference on Information Sciences and Systems (CISS 2008), Princeton, NJ, USA, 19–21 March 2008; pp. 721–726. [Google Scholar]
- Ferrie, C.; Emerson, J. Frame representations of quantum mechanics and the necessity of negativity in quasi-probability representations. J. Phys. A 2008, 41, 352001. [Google Scholar] [CrossRef]
- Ferrie, C.; Emerson, J. Framed Hilbert space: Hanging the quasi-probability pictures of quantum theory. New J. Phys. 2009, 11, 063040. [Google Scholar] [CrossRef]
- Bengtsson, I.; Granström, H. The Frame Potential, on Average. Open Syst. Inf. Dyn. 2009, 16, 145–156. [Google Scholar] [CrossRef]
- Fickus, M. Maximally Equiangular Frames and Gauss Sums. J. Fourier Anal. Appl. 2009, 15, 413–427. [Google Scholar] [CrossRef]
- Bodmann, B.G.; Elwood, H.J. Complex equiangular Parseval frames and Seidel matrices containing pth roots of unity. Proc. AMS 2010, 138, 4387–4404. [Google Scholar] [CrossRef]
- Waldron, S. Frames for vector spaces and affine spaces. Linear Algebra Appl. 2011, 435, 77–94. [Google Scholar] [CrossRef]
- Fickus, M.; Mixon, D.G.; Tremain, J.C. Steiner equiangular tight frames. Linear Algebra Appl. 2012, 436, 1014–1027. [Google Scholar] [CrossRef]
- Chien, T.Y.; Waldron, S. A characterisation of projective unitary equivalence of finite frames. arXiv 2013, arXiv:1312.5393. [Google Scholar]
- Waldron, S. Group frames. In Finite Frames: Theory and Applications; Casazza, P.G., Kutyniok, G., Eds.; Springer: New York, NY, USA, 2013; pp. 171–191. [Google Scholar]
- Chien, T.Y.; Flynn, V.; Waldron, S. Tight frames for cyclotomic fields and other rational vector spaces. Linear Algebra Appl. 2015, 476, 98–123. [Google Scholar] [CrossRef]
- Goyeneche, D.; Turek, O. Equiangular tight frames and unistochastic matrices. J. Phys. A 2017, 50, 245304. [Google Scholar] [CrossRef]
- Malikiosis, R.D. Spark deficient Gabor frames. arXiv 2016, arXiv:1602.09012. [Google Scholar]
- Chien, T.Y.; Waldron, S. Nice error frames, canonical abstract error groups and the construction of SICs. Linear Algebra Appl. 2017, 516, 93–117. [Google Scholar] [CrossRef]
- Appleby, D.M. Symmetric informationally complete-positive operator valued measures and the extended Clifford group. J. Math. Phys. 2005, arXiv:quant-ph/041200146, 052107. [Google Scholar]
- Flammia, S. On SIC-POVMs in prime dimensions. J. Phys. A 2006, 39, 13483–13493. [Google Scholar] [CrossRef]
- Appleby, D.M. Properties of the Extended Clifford Group with Applications to SIC-POVMs and MUBs. arXiv 2009, arXiv:0909.5233. [Google Scholar]
- Larsson, J.Å. SIC POVMs and the Discrete Affine Fourier Transform (the Linear Canonical Transform). 2010. Available online: http://www.akademietraunkirchen.com/wp-content/uploads/2010/06/SIC-POVMs-and-the-Discrete-Affine-Fourier-Transform.pdf (accessed on 17 July 2017).
- Appleby, M.; Bengtsson, I.; Brierley, S.; Grassl, M.; Gross, D.; Larsson, J.Å. Monomial representations of the Clifford group. Quantum Inf. Comput. 2012, arXiv:1102.126812, 0404–0431. [Google Scholar]
- Bengtsson, I. A remarkable representation of the Clifford group. arXiv 2012, arXiv:1202.3559. [Google Scholar]
- Klappenecker, A.; Rötteler, M.; Shparlinski, I.E.; Winterhof, A. On approximately symmetric informationally complete positive operator-valued measures and related systems of quantum states. J. Math. Phys. 2005, 46, 082104. [Google Scholar] [CrossRef]
- Appleby, D.M. Symmetric informationally complete measurements of arbitrary rank. Opt. Spectrosc. 2007, arXiv:quant-ph/0611260103, 416–428. [Google Scholar]
- Gour, G.; Kalev, A. Construction of all general symmetric informationally complete measurements. J. Phys. A 2014, 47, 335302. [Google Scholar] [CrossRef]
- Rastegin, A.E. Notes on general SIC-POVMs. Phys. Scr. 2014, 89, 085101. [Google Scholar] [CrossRef]
- Chen, B.; Li, T.; Fei, S.M. General SIC measurement-based entanglement detection. Quantum Inf. Process. 2015, 14, 2281–2290. [Google Scholar] [CrossRef]
- Shen, S.Q.; Li, M.; Duan, X.F. Entanglement detection via some classes of measurements. Phys. Rev. A 2015, 91, 012326. [Google Scholar] [CrossRef]
- Graydon, M.A.; Appleby, D.M. Entanglement and designs. J. Phys. A 2016, arXiv:1507.0788149, 33LT02. [Google Scholar]
- Cao, X.; Mi, J.; Xu, S. Two constructions of approximately symmetric informationally complete positive operator-valued measures. J. Math. Phys. 2017, 58, 062201. [Google Scholar] [CrossRef]
- Planat, M.; Gedik, Z. Magic informationally complete POVMs with permutations. arXiv 2017, arXiv:1704.02749. [Google Scholar]
- Fuchs, C.A. Notwithstanding Bohr, the Reasons for QBism. arXiv 2017, arXiv:1705.03483. [Google Scholar]
- Khrennikov, A.; Stacey, B.C. Aims and Scope of the Special Issue, “Quantum Foundations: Informational Perspective”. Found. Phys. 2017. [Google Scholar] [CrossRef]
- Oreshkov, O.; Calsamiglia, J.; Muñoz-Tapia, R.; Bagan, E. Optimal Signal States for Quantum Detectors. New J. Phys. 2011, 13, 073032. [Google Scholar] [CrossRef]
- Dall’Arno, M.; D’Ariano, G.M.; Sacchi, M.F. Informational power of quantum measurements. Phys. Rev. A 2011, 83, 062304. [Google Scholar] [CrossRef]
- Dall’Arno, M. Accessible information and informational power of quantum 2-designs. Phys. Rev. A 2014, 90, 052311. [Google Scholar] [CrossRef]
- Dall’Arno, M.; Buscemi, F.; Ozawa, M. Tight bounds on accessible information and informational power. J. Phys. A Math. Theor. 2014, 47, 235302. [Google Scholar] [CrossRef]
- Appleby, D.M.; Dang, H.B.; Fuchs, C.A. Symmetric Informationally-Complete Quantum States as Analogues to Orthonormal Bases and Minimum-Uncertainty States. Entropy 2014, 16, 1484–1492. [Google Scholar] [CrossRef]
- Słomczyński, W.; Szymusiak, A. Highly symmetric POVMs and their informational power. Quantum Inf. Process. 2014, arXiv:1402.037515, 505–606. [Google Scholar]
- Szymusiak, A. Maximally informative ensembles for SIC-POVMs in dimension 3. J. Phys. A 2014, arXiv:1405.005247, 445301. [Google Scholar]
- Dall’Arno, M. Hierarchy of bounds on accessible information and informational power. Phys. Rev. A 2015, 92, 012328. [Google Scholar] [CrossRef]
- Brandsen, S.; Dall’Arno, M.; Szymusiak, A. Communication capacity of mixed quantum t-designs. Phys. Rev. A 2016, arXiv:1603.0632094, 022335. [Google Scholar]
- Słomczyński, W.; Szczepanek, A. Quantum dynamical entropy, chaotic unitaries and complex Hadamard matrices. arXiv 2016, arXiv:1612.03363. [Google Scholar]
- Szymusiak, A. Pure states that are ‘most quantum’ with respect to a given POVM. arXiv 2017, arXiv:1701.01139. [Google Scholar]
- König, R.; Renner, R. A de Finetti Representation for Finite Symmetric Quantum States. J. Phys. A 2005, arXiv:quant-ph/041022946, 122108. [Google Scholar]
- Carmeli, C.; Heinosaari, T.; Toigo, A. Sequential measurements of conjugate observables. J. Phys. A 2011, arXiv:1105.497644, 285304. [Google Scholar]
- Carmeli, C.; Heinosaari, T.; Toigo, A. Informationally complete joint measurements on finite quantum systems. Phys. Rev. A 2012, arXiv:1111.350985, 012109. [Google Scholar]
- Kalev, A.; Shang, J.; Englert, B.G. Experimental proposal for symmetric minimal two-qubit state tomography. Phys. Rev. A 2012, 85, 052115. [Google Scholar] [CrossRef]
- Kalev, A.; Shang, J.; Englert, B.G. Symmetric Minimal Quantum Tomography by Successive Measurements. Phys. Rev. A 2012, 85, 052116. [Google Scholar] [CrossRef]
- Fuchs, C.A.; Stacey, B.C. Some Negative Remarks on Operational Approaches to Quantum Theory. In Quantum Theory: Informational Foundations and Foils; Chiribella, G., Spekkens, R.W., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 283–305. [Google Scholar]
- Oszmaniec, M.; Guerini, L.; Wittek, P.; Acín, A. Simulating positive-operator-valued measures with projective measurements. arXiv 2016, arXiv:1609.06139. [Google Scholar]
- Fuchs, C.A.; Sasaki, M. Squeezing Quantum Information Through a Classical Channel: Measuring the Quantumness of a Set of Quantum States. Quantum Inf. Comput. 2003, arXiv:quant-ph/03020923, 377–404. [Google Scholar]
- Englert, B.G.; Kaszlikowski, D.; Ng, H.K.; Chua, W.K.; Řeháček, J.; Anders, J. Efficient and Robust Quantum Key Distribution with Minimal State Tomography. arXiv 2004, arXiv:quant-ph/0412075. [Google Scholar]
- Fuchs, C.A. On the Quantumness of a Hilbert Space. Quantum Inf. Comput. 2004, arXiv:quant-ph/04041224, 467–478. [Google Scholar]
- Řeháček, J.; Englert, B.G.; Kaszlikowski, D. Minimal qubit tomography. Phys. Rev. A 2004, 70, 052321. [Google Scholar] [CrossRef]
- Renes, J.M. Equiangular Spherical Codes in Quantum Cryptography. Quantum Inf. Comput. 2005, arXiv:quant-ph/04090435, 81–92. [Google Scholar]
- Kim, I.H. Quantumness, Generalized Spherical 2-design and Symmetric Informationally Complete POVM. Quantum Inf. Comput. 2007, arXiv:quant-ph/06080247, 730–737. [Google Scholar]
- Matthews, W.; Wehner, S.; Winter, A. Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding. Commun. Math. Phys. 2009, arXiv:0810.2327291, 813–843. [Google Scholar]
- Feynman, R.P. Negative probability. In Quantum Implications: Essays in Honour of David Bohm; Routledge: Abingdon-on-Thames, UK, 1987; pp. 235–248. [Google Scholar]
- Bengtsson, I.; Blanchfield, K.; Cabello, A. A Kochen-Specker Inequality from a SIC. Phys. Lett. A 2012, arXiv:1109.6514376, 374–376. [Google Scholar]
- Cabello, A. Minimal proofs of state-independent contextuality. arXiv 2012, arXiv:1201.0374. [Google Scholar]
- Andersson, D.; Bengtsson, I.; Blanchfield, K.; Dang, H.B. States that are far from being stabilizer states. J. Phys. A 2014, arXiv:1412.818148, 345301. [Google Scholar]
- Xu, Z.P.; Chen, J.L.; Su, H.Y. State-independent contextuality sets for a qutrit. Phys. Lett. A 2015, arXiv:1501.01746379, 1868–1870. [Google Scholar]
- Howard, M.; Campbell, E.T. Application of a resource theory for magic states to fault-tolerant quantum computing. Phys. Rev. Lett. 2017, arXiv:1609.07488118, 090501. [Google Scholar] [PubMed]
- Ahmadi, M.; Dang, H.B.; Gour, G.; Sanders, B.C. Quantification and manipulation of magic states. arXiv 2017, arXiv:1706.03828. [Google Scholar]
- Andersson, O.; Badziag, P.; Bengtsson, I.; Dumitru, I.; Cabello, A. Self-testing properties of the elegant Bell inequality. arXiv 2017, arXiv:1706.02130. [Google Scholar]
- Bodmann, B.G.; Kribs, D.W.; Paulsen, V.I. Decoherence-Insensitive Quantum Communication by Optimal C*-Encoding. IEEE Trans. Inf. Theory 2007, 53, 4738–4749. [Google Scholar] [CrossRef]
- Kayser, J.; Luoma, K.; Strunz, W.T. Geometric Characterization of True Quantum Decoherence. arXiv 2015, arXiv:1508.04027. [Google Scholar]
- Zhu, H.; Teo, Y.S.; Englert, B.G. Two-Qubit Symmetric Informationally Complete Positive Operator Valued Measures. Phys. Rev. A 2010, arXiv:1008.113882, 042308. [Google Scholar]
- Grassl, M. Tomography of quantum states in small dimensions. Electron. Notes Discret. Math. 2005, 20, 151–164. [Google Scholar] [CrossRef]
- Ballester, M.A. Optimal Estimation of SU(d) Using Exact and Approximate 2-designs. arXiv 2005, arXiv:quant-ph/0507073. [Google Scholar]
- Belovs, A. Welch Bounds and Quantum State Tomography. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2008. [Google Scholar]
- Goyeneche, D.; de la Torre, A.C. Quantum state reconstruction from dynamical systems theory. arXiv 2011, arXiv:1103.3213. [Google Scholar]
- Zhu, H.; Englert, B.G. Quantum State Tomography with Fully Symmetric Measurements and Product Measurements. Phys. Rev. A 2011, arXiv:1105.456184, 022327. [Google Scholar]
- Petz, D.; Ruppert, L. Efficient quantum tomography needs complementary and symmetric measurements. Rep. Math. Phys. 2012, 69, 161–177. [Google Scholar] [CrossRef]
- Petz, D.; Ruppert, L. Optimal quantum-state tomography with known parameters. J. Phys. A 2012, 45, 085306. [Google Scholar] [CrossRef]
- Goyeneche, D.; de la Torre, A.C. Quantum tomography meets dynamical systems and bifurcations theory. J. Math. Phys. 2014, 55, 062103. [Google Scholar] [CrossRef]
- Petz, D.; Ruppert, L.; Szanto, A. Conditional SIC-POVMs. IEEE Trans. Inf. Theory 2014, 60, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, C.H. Efficient and robust methods for quantum tomography. Ph.D. Thesis, University of New Mexico, Albuquerque, NM, USA, 2016. [Google Scholar]
- Chaparro Sogamoso, E.C.; Angulo, D.; Fonseca-Romero, K.M. Single plane minimal tomography of double slit qubits. arXiv 2017, arXiv:1703.04260. [Google Scholar]
- Graydon, M.A. Quaternionic quantum dynamics on complex Hilbert spaces. Found. Phys. 2013, 43, 656–664. [Google Scholar] [CrossRef]
- Cohn, H.; Kumar, A.; Minton, G. Optimal simplices and codes in projective spaces. Geom. Topol. 2016, arXiv:1308.318820, 1289–1357. [Google Scholar]
- Fuchs, C.A.; Schack, R. A Quantum-Bayesian route to quantum state space. Found. Phys. 2011, 41, 345–356. [Google Scholar] [CrossRef]
- Fuchs, C.A. Charting the Shape of Quantum-State Space. In Quantum Communication, Measurement and Computing (QCMC): The Tenth International Conference; Ralph, T., Lam, P.K., Eds.; American Institute of Physics: Melville, NY, USA, 2011; AIP Conference Proceedings Volume 1363, pp. 305–314. [Google Scholar]
- Rosado, J.I. Representation of quantum states as points in a probability simplex associated to a SIC-POVM. Found. Phys. 2011, arXiv:1007.071541, 1200–1213. [Google Scholar]
- Appleby, D.M.; Ericsson, Å.; Fuchs, C. Properties of QBist State Spaces. Found. Phys. 2011, arXiv:0910.275041, 564–579. [Google Scholar]
- Rosado, J.I. Probing the geometry of quantum states with symmetric POVMs. arXiv 2013, arXiv:1309.7309. [Google Scholar]
- Grassl, M. On SIC-POVMs and MUBs in dimension 6. arXiv 2004, arXiv:quant-ph/0406175. [Google Scholar]
- Colin, S.; Corbett, J.; Durt, T.; Gross, D. About SIC POVMs and discrete Wigner distributions. J. Opt. B Quantum Semiclass. Opt. 2005, 7, S778–S785. [Google Scholar] [CrossRef]
- Wootters, W.K. Quantum measurements and finite geometry. Found. Phys. 2006, arXiv:quant-ph/040603236, 112–126. [Google Scholar]
- Albouy, O.; Kibler, M.R. A unified approach to SIC-POVMs and MUBs. J. Russ. Laser Res. 2007, 28, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Godsil, C.; Roy, A. Equiangular Lines, Mutually Unbiased Bases, and Spin Models. Eur. J. Comb. 2009, 30, 246–262. [Google Scholar] [CrossRef]
- Appleby, D.M. SIC-POVMs and MUBs: Geometrical Relationships in Prime Dimension. arXiv 2009, arXiv:0905.1428. [Google Scholar]
- Rastegin, A.E. Uncertainty relations for MUBs and SIC-POVMs in terms of generalized entropies. Eur. Phys. J. D 2013, 67, 269. [Google Scholar] [CrossRef]
- Beneduci, R.; Bullock, T.; Busch, P.; Carmeli, C.; Heinosaari, T.; Toigo, A. An operational link between MUBs and SICs. Phys. Rev. A 2013, arXiv:1306.600288, 032312. [Google Scholar]
- Jedwab, J.; Wiebe, A. Constructions of complex equiangular lines from mutually unbiased bases. arXiv 2014, arXiv:1408.5169. [Google Scholar]
- Veitch, V.; Mousavian, S.A.H.; Gottesman, D.; Emerson, J. The resource theory of stabilizer computation. New J. Phys. 2014, arXiv:1307.717116, 013009. [Google Scholar]
- Zhu, H. Mutually unbiased bases as minimal Clifford covariant 2-designs. Phys. Rev. A 2015, arXiv:1505.0112391, 060301. [Google Scholar]
- Bengtsson, I.; Życzkowski, K. On discrete structures in finite Hilbert spaces. arXiv 2017, arXiv:1701.07902. [Google Scholar]
- Aravind, P.K. MUBs and SIC-POVMs of a spin-1 system from the Majorana approach. arXiv 2017, arXiv:1707.02601. [Google Scholar]
- Casazza, P.G.; Cheng, D. Associating vectors in with rank 2 projections in : With applications. arXiv 2017, arXiv:1703.02657. [Google Scholar]
- Bar-On, T. The probability interpretation of Wigner function by SIC-POVM. Eur. Phys. J. D 2009, 54, 137–138. [Google Scholar] [CrossRef]
- Bar-On, T. Discrete Wigner function by symmetric informationally complete positive operator valued measure. J. Math. Phys. 2009, 50, 072106. [Google Scholar] [CrossRef]
- Filippov, S.N.; Man’ko, V.I. Symmetric Informationally Complete Positive Operator Valued Measure and Probability Representation of Quantum Mechanics. J. Russ. Laser Res. 2010, 31, 211–231. [Google Scholar] [CrossRef]
- Saraceno, M.; Ermann, L.; Cormick, C. Phase-space representations of SIC-POVM fiducial states. Phys. Rev. A 2016, arXiv:1612.0235195, 032102. [Google Scholar]
- Sloane, N.J.A. A002853: Maximal size of a set of equiangular lines in n dimensions. In On-Line Encyclopedia of Integer Sequences; The OEIS Foundation: Highland Park, NJ, USA, 2015. [Google Scholar]
- Greaves, G.; Koolen, J.H.; Munemasa, A.; Szöllősi, F. Equiangular lines in Euclidean spaces. J. Comb. Theory Ser. A 2016, arXiv:1403.2155138, 208–235. [Google Scholar]
- Balla, I.; Dräxler, F.; Keevash, P.; Sudakov, B. Equiangular Lines and Spherical Codes in Euclidean Space. arXiv 2016, arXiv:1606.06620. [Google Scholar]
- Wiener, N. Time Series; MIT Press: Cambridge, MA, USA, 1964. [Google Scholar]
- Liu, Y. 2012. Available online: https://sourceforge.net/projects/hlbfgs/ (accessed on 17 July 2017).
- Gray, J. The Hilbert Challenge; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Appleby, M. Email communication, 2016.
Topic | References |
---|---|
Abstract algebra | [8,10,11,71] |
Algebraic number theory | [5,6,7,26,62,72] |
Category theory | [73,74] |
Compressed sensing and signal processing | [75,76,77,78] |
Elliptic curves | [41,50,79,80] |
Exact solutions | [4,8,25,26,81,82,83,84,85,86] |
Frame theory | [25,37,63,77,78,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101] |
Finite group theory | [9,12,13,21,47,101,102,103,104,105,106,107] |
Generalized and approximate SICs | [71,74,108,109,110,111,112,113,114,115,116] |
Historical overview | [45,117,118] |
Informational power and entropy | [13,21,53,119,120,121,122,123,124,125,126,127,128,129] |
Laboratory experiments | [28,29,30,31,32,33,34,35] |
Multipartite systems and sequential measurements | [47,83,130,131,132,133,134,135,136] |
Quantum communication and cryptography | [28,29,137,138,139,140,141,142,143] |
Quantum computing and contextuality | [13,20,40,53,135,144,145,146,147,148,149,150,151] |
Quantum decoherence | [152,153] |
Quantum entanglement | [19,112,113,114,137,139,154] |
Quantum tomography | [18,31,36,63,71,133,134,138,140,155,156,157,158,159,160,161,162,163,164,165] |
Quaternions and octonions | [9,13,48,49,73,166,167] |
Reconstructing quantum theory | [14,17,22,23,40,74,117,135,168,169,170,171,172] |
SICs and Mutually Unbiased Bases | [16,53,80,125,145,151,173,174,175,176,177,178,179,180,181,182,183,184,185,186] |
SICs, Wigner functions and phase space representations | [20,29,40,53,83,89,90,144,174,187,188,189,190] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuchs, C.A.; Hoang, M.C.; Stacey, B.C. The SIC Question: History and State of Play. Axioms 2017, 6, 21. https://doi.org/10.3390/axioms6030021
Fuchs CA, Hoang MC, Stacey BC. The SIC Question: History and State of Play. Axioms. 2017; 6(3):21. https://doi.org/10.3390/axioms6030021
Chicago/Turabian StyleFuchs, Christopher A., Michael C. Hoang, and Blake C. Stacey. 2017. "The SIC Question: History and State of Play" Axioms 6, no. 3: 21. https://doi.org/10.3390/axioms6030021
APA StyleFuchs, C. A., Hoang, M. C., & Stacey, B. C. (2017). The SIC Question: History and State of Play. Axioms, 6(3), 21. https://doi.org/10.3390/axioms6030021