# Toward Measuring Network Aesthetics Based on Symmetry

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

- order O (e.g., symmetry of a polygon),
- complexity C (e.g., number of straight lines of a polygon),

## 2. Quantitative Methods and Network Aesthetic Measurement

`R`-based network visualization tool NetBioV [48]. By contrast, the network in Figure 2b represents a transcriptional regulatory network inferred from yeast (see also [49]). These two networks are both undirected and unlabeled, and it should be noted that our definition of aesthetics focuses exclusively on structural properties, e.g., symmetry. This concept could easily be extended to include semantic and functional issues. Such an extension would generate a mapping $\mathrm{Style}\left(G\right)=\mathrm{Style}\left(G\right)(\mathrm{struct},\mathrm{sem},\mathrm{funct})$ for measuring aesthetics of structured objects based on the three parameters: structure, semantics, and function. The space of network styles (Style(G)) represents a graph class. So, the mapping enables us to find parameters (e.g., measures) for their structure, semantics, and function in a more simplified space. For example, structural properties can be mapped to the reals. We plan to define this formally and study the properties of such mappings in future work.

## 3. Methods and Discussion

#### 3.1. Graph-Theoretical Definitions

#### 3.2. Results

**Theorem**

**1.**

**Proof.**

## 4. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Fucks, W. Mathematische Analyse des literarischen Stils. In Studium Generale; Springer: New York, NY, USA, 1953; Volume 6. [Google Scholar]
- Ganter, B.; Mineau, G.W. Conceptual Structures: Logical, Linguistic, and Computational Issues; Lecture Notes in Artificial Intelligence; Springer: New York, NY, USA, 2000. [Google Scholar]
- Mehler, A. Textbedeutung. Zur Prozeduralen Analyse und Repräsentation Struktureller Ähnlichkeiten von Texten; Sprache, Sprechen und Computer/Computer Studies in Language and Speech; Peter Lang: Frankfurt am Main, Germany, 2001; Volume 5. [Google Scholar]
- Tuldava, J. A Statistical Method of Comparison of the Lexical Composition of Two Texts. In Methods in Quantitative Linguistics; Tuldava, J., Ed.; Wissenschaftlicher Verlag Trier: Trier, Germany, 1995. [Google Scholar]
- Birkhoff, G.D. A mathematical approach to aesthetics. Scientia (Milano)
**1931**, 50, 133–146. [Google Scholar] - Boselie, F.; Leeuwenberg, E. Birkhoff Revisited: Beauty as a Function of Effect and Means. Am. J. Psychol.
**1985**, 98, 1–39. [Google Scholar] [CrossRef] [PubMed] - Bense, M. The Projects of Generative Aesthetics. In Cybernetics, Art, and Ideas; Reichardt, J., Ed.; New York Graphic Society: Greenwich, CT, USA, 1971. [Google Scholar]
- Moles, A.A. Information Theory and Esthetic Perception; University of Illinois Press: Urbana, IL, USA, 1966. [Google Scholar]
- Rigau, J.; Feixas, M.; Sbert, M. Informational Aesthetics Measures. IEEE Comput. Graph. Appl.
**2008**, 28, 24–34. [Google Scholar] [CrossRef] [PubMed] - Galanter, P. Complexity, Neuroaesthetics, and Computational Aesthetic Evaluation. In Proceedings of the 13th Generative Art Conference GA2010, Milan, Italy, 15–17 December 2010; pp. 400–409. [Google Scholar]
- Purchase, H. Metrics for Graph Drawing Aesthetics. J. Vis. Lang. Comput.
**2002**, 13, 501–516. [Google Scholar] [CrossRef] - Beck, F.; Burch, M.; Diehl, S. Towards an Aesthetic Dimensions Framework for Dynamic Graph Visualisations. In Proceedings of the 13-th International Conference Information Visualisation, Barcelona, Spain, 15–17 July 2009; pp. 592–597. [Google Scholar]
- Ware, C.; Purchase, H.; Colpoys, L.; McGill, M. Cognitive Measurements of Graph Aesthetics. Inf. Vis.
**2002**, 1, 103–110. [Google Scholar] [CrossRef] - Battista, G.D.; Eades, P.; Tamassia, R.; Tollis, I.G. Algorithms for the Visualization of Graphs; Prentice Hall: Englewood Cliffs, NJ, USA, 1999. [Google Scholar]
- Dehmer, M.; Emmert-Streib, F.; Gesell, T. A comparative analysis of multidimensional features of objects resembling sets of graphs. Appl. Math. Comput.
**2008**, 196, 221–235. [Google Scholar] [CrossRef] - Mowshowitz, A.; Dehmer, M. Entropy and the Complexity of Graphs Revisited. Entropy
**2012**, 14, 559–570. [Google Scholar] [CrossRef] - Botafogo, R.A.; Rivlin, E.; Shneiderman, B. Structural Analysis of Hypertexts: Identifying Hierarchies and Useful Metrics. ACM Trans. Inf. Syst.
**1992**, 10, 142–180. [Google Scholar] [CrossRef] - Schutte, M.; Dehmer, M. Large-scale analysis of structural branching measures. J. Math. Chem.
**2013**, 52, 805–819. [Google Scholar] [CrossRef] - Dehmer, M.; Emmert-Streib, F. Quantitative Graph Theory. Theory and Applications; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; Wiley-VCH: Weinheim, Germany, 2002. [Google Scholar]
- Mowshowitz, A. Entropy and the complexity of the graphs I: An index of the relative complexity of a graph. Bull. Math. Biophys.
**1968**, 30, 175–204. [Google Scholar] [CrossRef] [PubMed] - Brillouin, L. Science and Information Theory; Academic Press: New York, NY, USA, 1956. [Google Scholar]
- Morowitz, H. Some order-disorder considerations in living systems. Bull. Math. Biophys.
**1953**, 17, 81–86. [Google Scholar] [CrossRef] - Trucco, E. A note on the information content of graphs. Bull. Math. Biol.
**1956**, 18, 129–135. [Google Scholar] [CrossRef] - Rashevsky, N. Life, Information Theory, and Topology. Bull. Math. Biophys.
**1955**, 17, 229–235. [Google Scholar] [CrossRef] - Dehmer, M. Information Theory of Networks. Symmetry
**2012**, 3, 767–779. [Google Scholar] [CrossRef] - Dehmer, M.; Mowshowitz, A. A History of Graph Entropy Measures. Inf. Sci.
**2011**, 1, 57–78. [Google Scholar] [CrossRef] - Li, X.; Shi, Y.; Gutman, I. Graph Energy; Springer: New York, NY, USA, 2012. [Google Scholar]
- Ulanowicz, R.E. Circumscribed complexity in ecological networks. In Advances in Network Complexity; Devillers, J., Balaban, A.T., Eds.; Wiley-Blackwell: Oxford, UK, 2013; pp. 249–258. [Google Scholar]
- Emmert-Streib, F.; Dehmer, M. (Eds.) Analysis of Microarray Data: A Network-Based Approach; Wiley VCH: Weinheim, Germany, 2010. [Google Scholar]
- Diudea, M.V. QSPR / QSAR Studies by Molecular Descriptors; Nova Publishing: New York, NY, USA, 2001. [Google Scholar]
- Hirata, H.; Ulanowicz, R.E. Information theoretical analysis of ecological networks. Int. J. Syst. Sci.
**1984**, 15, 261–270. [Google Scholar] [CrossRef] - Ulanowicz, R.E. Quantitative methods for ecological network analysis. Comput. Biol. Chem.
**2004**, 28, 321–339. [Google Scholar] [CrossRef] [PubMed] - Dehmer, M.; Emmert-Streib, F. Mining Graph Patterns in Web-based Systems: A Conceptual View. In Genres on the Web: Computational Models and Empirical Studies; Mehler, A., Sharoff, S., Rehm, G., Santini, M., Eds.; Springer: Berlin, Germany; New York, NY, USA, 2010; pp. 237–253. [Google Scholar]
- Bunke, H.; Günter, S.; Jiang, X. Towards bridging the gap between statistical and structural pattern recognition: Two new concepts in graph matching. In Proceedings of the Advances in Pattern Recognition—ICAPR 2001, Rio de Janeiro, Brazil, 11–14 March 2001; pp. 1–11. [Google Scholar]
- Mehler, A. Textmining. In Texttechnologie. Perspektiven und Anwendungen; Lobin, H., Lemnitzer, L., Eds.; Stauffenburg: Tübingen, Germany, 2004; pp. 83–107. [Google Scholar]
- Dehmer, M.; Mehler, A. A new method of measuring similarity for a special class of directed graphs. Tatra Mt. Math. Publ.
**2007**, 36, 39–59. [Google Scholar] - Emmert-Streib, F.; Dehmer, M.; Shi, Y. Fifty years of graph matching, network alignment and network comparison. Inf. Sci.
**2016**, 346–347, 180–197. [Google Scholar] [CrossRef] - Mehler, A. Social Ontologies as Generalized Nearly Acyclic Directed Graphs: A Quantitative Graph Model of Social Tagging. In Towards an Information Theory of Complex Networks: Statistical Methods and Applications; Dehmer, M., Emmert-Streib, F., Mehler, A., Eds.; Birkhäuser: Boston, MA, USA; Basel, Switzerland, 2011; pp. 259–319. [Google Scholar]
- Bonchev, D. Topological order in molecules 1. Molecular branching revisited. J. Mol. Struct. THEOCHEM
**1995**, 336, 137–156. [Google Scholar] [CrossRef] - Garrido, A. Analysis of asymmetry measures. Adv. Model. Optim.
**2008**, 2, 199–211. [Google Scholar] - Garrido, A. Symmetry of Complex Networks. Adv. Model. Optim.
**2009**, 11, 615–624. [Google Scholar] [CrossRef] - Mowshowitz, A.; Dehmer, M. A Symmetry Index for Graphs. Symmetry Cult. Sci.
**2010**, 21, 321–327. [Google Scholar] - Dehmer, M.; Mehler, A.; Emmert-Streib, F. Graph-theoretical Characterizations of Generalized Trees. In Proceedings of the International Conference on Machine Learning: Models, Technologies & Applications (MLMTA’07), Las Vegas, NV, USA, 25–28 June 2007; pp. 113–117. [Google Scholar]
- Bahnhöfe des MVV. Available online: http://www.mvv-muenchen.de/de/netz-bahnhoefe/bahnhofsinformation/index.html (accessed on 12 January 2017).
- Netzpläne des MVV. Information des Münchner Verkehrs- und Tarifverbundes GmbH. Available online: http://www.mvv-muenchen.de/de/netz-bahnhoefe/netzplaene/index.html (accessed on 12 January 2017).
- Rodrigue, J.P.; Comtois, C.; Slack, B. The Geography of Transport Systems; Taylor & Francis: Boca Raton, FL, USA, 2013. [Google Scholar]
- Tripathi, S.; Dehmer, M.; Emmert-Streib, F. NetBioV: An R package for visualizing large network data in biology and medicine. Bioinformatics
**2014**, 19, 2834–2836. [Google Scholar] [CrossRef] [PubMed] - Emmert-Streib, F.; Dehmer, M. Information processing in the transcriptional regulatory network of yeast: Functional robustness. BMC Syst. Biol.
**2009**, 3. [Google Scholar] [CrossRef] [PubMed] - Harary, F. Graph Theory; Addison Wesley Publishing Company: Reading, MA, USA, 1969. [Google Scholar]
- Filonik, D.; Baur, D. Measuring aesthetics for information visualization. In Proceedings of the 13th International Conference Information Visualisation, Barcelona, Spain, 15–17 July 2009; pp. 579–584. [Google Scholar]
- Frucht, R. Herstellung von Graphen mit vorgegebener abstrakter Gruppe. Compos. Math.
**1939**, 6, 239–250. [Google Scholar] - Mowshowitz, A.; Mitsou, V. Entropy, orbits and spectra of graphs. In Analysis of Complex Networks: From Biology to Linguistics; Dehmer, M., Emmert-Streib, F., Eds.; Wiley-VCH: Weinheim, Germany, 2009; pp. 1–22. [Google Scholar]
- Mowshowitz, A. Entropy and the complexity of graphs II: The information content of digraphs and infinite graphs. Bull. Math. Biophys.
**1968**, 30, 225–240. [Google Scholar] [CrossRef] [PubMed] - Mowshowitz, A. Entropy and the complexity of graphs III: Graphs with prescribed information content. Bull. Math. Biophys.
**1968**, 30, 387–414. [Google Scholar] [CrossRef] - Mowshowitz, A. Entropy and the complexity of graphs IV: Entropy measures and graphical structure. Bull. Math. Biophys.
**1968**, 30, 533–546. [Google Scholar] [CrossRef] - McKay, B.D.; Piperno, A. Practical Graph Isomorphism, II, 2013. Available online: http://cs.anu.edu.au/~bdm/nauty/ (accessed on 12 January 2017).
- Deza, M.M.; Deza, E. Encyclopedia of Distances, 2nd ed.; Springer: New York, NY, USA, 2012. [Google Scholar]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chen, Z.; Dehmer, M.; Emmert-Streib, F.; Mowshowitz, A.; Shi, Y.
Toward Measuring Network Aesthetics Based on Symmetry. *Axioms* **2017**, *6*, 12.
https://doi.org/10.3390/axioms6020012

**AMA Style**

Chen Z, Dehmer M, Emmert-Streib F, Mowshowitz A, Shi Y.
Toward Measuring Network Aesthetics Based on Symmetry. *Axioms*. 2017; 6(2):12.
https://doi.org/10.3390/axioms6020012

**Chicago/Turabian Style**

Chen, Zengqiang, Matthias Dehmer, Frank Emmert-Streib, Abbe Mowshowitz, and Yongtang Shi.
2017. "Toward Measuring Network Aesthetics Based on Symmetry" *Axioms* 6, no. 2: 12.
https://doi.org/10.3390/axioms6020012