Perturbation for the Group Inverse in a Banach Algebra
Abstract
1. Introduction
2. Orthogonal Conditions
3. Commutative Conditions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castro González, N.; Koliha, J.J. New additive results for the g-Drazin inverse. Proc. R. Soc. Edinb. 2004, 134A, 1085–1097. [Google Scholar] [CrossRef]
- Chen, H.; Sheibani, M. Generalized Drazin inverses in a ring. Filomat 2018, 32, 5289–5295. [Google Scholar] [CrossRef]
- Chen, H.; Sheibani, M. g-Drazin inverses for operator matrices. Oper. Matrices 2020, 14, 23–31. [Google Scholar] [CrossRef]
- Cvetković-Ilić, D.S.; Liu, X.; Wei, Y. Some additive results for the generalized Drazin inverse in a Banach algebra. Electron. J. Linear Algebra 2011, 22, 1049–1058. [Google Scholar] [CrossRef]
- Hadji, S.; Zguitti, H. Jacobson’s lemma for generalized Drazin–Riesz inverses. Acta Math. Sin. Engl. Ser. 2023, 39, 481–496. [Google Scholar] [CrossRef]
- Liu, X.; Qin, X.; Benítez, J. New additive results for the generalized Drazin inverse in a Banach algebra. Filomat 2016, 30, 2289–2294. [Google Scholar] [CrossRef]
- Mosić, D.; Zou, H.; Chen, J. The generalized Drazin inverse of the sum in a Banach algebra. Ann. Funct. Anal. 2017, 8, 90–105. [Google Scholar] [CrossRef]
- Zhang, D.; Mosić, D. Explicit formulae for generalized Drazin inverse of block matrices over a Banach algebra. Filomat 2018, 32, 5907–5917. [Google Scholar] [CrossRef]
- Zou, H.; Mosić, D.; Chen, J. Generalized Drazin invertibility of the product and sum of two elements in a Banach algebra and its applications. Turkish. J. Math. 2017, 41, 548–563. [Google Scholar] [CrossRef]
- Yang, H.; Liu, X. The Drazin inverse of the sum of two matrices and its applications. J. Comput. Appl. Math. 2011, 235, 1412–1417. [Google Scholar] [CrossRef]
- Liu, X.; Qin, Y. Perturbation of the generalized Drazin inverse in Banach algebra. Acta Math. Sin. Chin. Ser. 2014, 57, 35–46. [Google Scholar]
- Liu, X.; Wu, S.; Yu, Y. On the Drazin inverse of the sum of two matrices. J. Appl. Math. 2011, 13, 831892. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, Y.; Mosić, D. Explicit formulae for the Drazin inverse of the sum of two matrices. Math. Slovaca 2025, 75, 83–98. [Google Scholar] [CrossRef]
- Peng, F.; Zhang, X. Some additive properties of the Drazin inverse and generalized Drazin inverse. Bull. Iran. Math. Soc. 2025, 51, 27. [Google Scholar] [CrossRef]
- Gao, Y.; Li, J. Perturbation bounds of core inverse under the Frobenius norm. Bull. Malays. Math. Soc. 2022, 45, 2361–2371. [Google Scholar] [CrossRef]
- Ma, H.; Mosić, D.; Stanimirović, P. Perturbation bounds for the group inverse and its oblique projection. Appl. Math. Comput. 2023, 449, 127963. [Google Scholar] [CrossRef]
- Liu, X.; Qin, Y.; Wei, H. Perturbation bound of the group inverse and the generalized schur complement in Banach algebra. Abstr. Appl. Anal. 2012, 629178. [Google Scholar] [CrossRef]
- Chen, H.; Sheibani, M. g-Hirano inverse in Banach algebras. Linear Multilinear Algebra 2021, 69, 1352–1362. [Google Scholar] [CrossRef]
- Mihajlović, N.; Djordjević, D.S. On group invertibility in rings. Filomat 2019, 33, 6141–6150. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Calci, T.P.; Kose, H.; Chen, H. Perturbation for the Group Inverse in a Banach Algebra. Axioms 2025, 14, 628. https://doi.org/10.3390/axioms14080628
Liu D, Calci TP, Kose H, Chen H. Perturbation for the Group Inverse in a Banach Algebra. Axioms. 2025; 14(8):628. https://doi.org/10.3390/axioms14080628
Chicago/Turabian StyleLiu, Dayong, Tugce Pekacar Calci, Handan Kose, and Huanyin Chen. 2025. "Perturbation for the Group Inverse in a Banach Algebra" Axioms 14, no. 8: 628. https://doi.org/10.3390/axioms14080628
APA StyleLiu, D., Calci, T. P., Kose, H., & Chen, H. (2025). Perturbation for the Group Inverse in a Banach Algebra. Axioms, 14(8), 628. https://doi.org/10.3390/axioms14080628