Construction of Inequalities for Network Quantum Steering Detection
Abstract
1. Introduction
2. Preliminaries
2.1. Bipartite Steering
2.2. Network Quantum Steering
3. Definition of Network Steering in a 3-Layer Tree-Shaped Network
4. Inequality Criteria for the 3-Layer Tree-Shaped Network Steerability
4.1. Detecting 3-Layer Tree-Shaped Network Steering via Correlation Matrices
4.2. Detecting via Some Classes of Measurements
4.3. Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schrödinger, E. Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 1935, 31, 555–563. [Google Scholar] [CrossRef]
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777. [Google Scholar] [CrossRef]
- Wiseman, H.M.; Jones, S.J.; Doherty, A.C. Steering, entanglement, nonlocality, and the Einstein–Podolsky-Rosen paradox. Phys. Rev. Lett. 2007, 98, 140402. [Google Scholar] [CrossRef]
- Branciard, C. One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering. Phys. Rev. A 2012, 85, 010301. [Google Scholar] [CrossRef]
- Gehring, T. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks. Nat. Commun. 2015, 6, 8795. [Google Scholar] [CrossRef]
- Walk, N. Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution. Optica 2016, 3, 634–642. [Google Scholar] [CrossRef]
- Piani, M.; Watrous, J. Necessary and sufficient quantum information characterization of Einstein–Podolsky-Rosen steering. Phys. Rev. Lett. 2015, 114, 060404. [Google Scholar] [CrossRef]
- He, Q.; Rosales Zárate, L.; Adesso, G. Secure continuous variable teleportation and Einstein–Podolsky-Rosen steering. Phys. Rev. Lett. 2015, 115, 180502. [Google Scholar] [CrossRef]
- Cavalcanti, E.G.; Jones, S.J.; Wiseman, H.M. Experimental criteria for steering and the Einstein–Podolsky-Rosen paradox. Phys. Rev. A 2009, 80, 032112. [Google Scholar] [CrossRef]
- Pusey, M.F. Negativity and steering: A stronger Peres conjecture. Phys. Rev. A 2013, 88, 032313. [Google Scholar] [CrossRef]
- Ren, C. Maximally steerable mixed state based on the linear steering inequality and the Clauser-Horne-Shimony-Holt-like steering inequality. Phys. Rev. A 2018, 97, 032119. [Google Scholar] [CrossRef]
- Chen, Y.N. Temporal steering inequality. Phys. Rev. A 2014, 89, 032112. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, H. Einstein–Podolsky-Rosen steering inequalities and applications. Entropy 2018, 20, 683. [Google Scholar] [CrossRef]
- Walborn, S.P. Revealing hidden einstein-podolsky-rosen nonlocality. Phys. Rev. Lett. 2011, 106, 130402. [Google Scholar] [CrossRef] [PubMed]
- Schneeloch, J. Einstein–Podolsky-Rosen steering inequalities from entropic uncertainty relations. Phys. Rev. A 2013, 87, 062103. [Google Scholar] [CrossRef]
- Pramanik, T.; Kaplan, M.; Majumdar, A.S. Fine-grained einstein-podolsky-rosen-steering inequalities. Phys. Rev. A 2014, 90, 050305. [Google Scholar] [CrossRef]
- Kogias, I. Hierarchy of steering criteria based on moments for all bipartite quantum systems. Phys. Rev. Lett. 2015, 115, 210401. [Google Scholar] [CrossRef]
- Chen, J.L. All-versus-nothing proof of Einstein–Podolsky-Rosen steering. Sci. Rep. 2013, 3, 2143. [Google Scholar] [CrossRef]
- Li, C.M. Genuine high-order einstein-podolsky-rosen steering. Phys. Rev. Lett. 2015, 115, 010402. [Google Scholar] [CrossRef]
- Cavalcanti, D. Detection of entanglement in asymmetric quantum networks and multipartite quantum steering. Nat. Commun. 2015, 6, 7941. [Google Scholar] [CrossRef]
- Riccardi, A. Multipartite steering inequalities based on entropic uncertainty relations. Phys. Rev. A 2018, 97, 052307. [Google Scholar] [CrossRef]
- Gupta, S. Genuine Einstein–Podolsky-Rosen steering of three-qubit states by multiple sequential observers. Phys. Rev. A 2021, 103, 022421. [Google Scholar] [CrossRef]
- Hsu, L.Y.; Kawamoto, S. Exploring Multipartite Steering Effect Using Bell Operators. Entropy 2019, 22, 19. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.; Luo, S. Detecting Einstein–Podolsky-Rosen steering via correlation matrices. Phys. Rev. A 2022, 106, 042402. [Google Scholar] [CrossRef]
- Designolle, S. Genuine high-dimensional quantum steering. Phys. Rev. Lett. 2021, 126, 200404. [Google Scholar] [CrossRef]
- Sangouard, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 2011, 83, 33. [Google Scholar] [CrossRef]
- Hammerer, K.; Sørensen, A.S.; Polzik, E.S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 2010, 82, 1041. [Google Scholar] [CrossRef]
- Jones, B.D. Network quantum steering. Phys. Rev. Lett. 2021, 127, 170405. [Google Scholar] [CrossRef]
- Jiang, G. Quantum steering in a star network. Europhys. Lett. 2024, 146, 68001. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, K.; Fei, S.M. Detection of network and genuine network quantum steering. Res. Phys. 2024, 56, 107244. [Google Scholar] [CrossRef]
- Shi, Y.Y. Classical simulation of quantum many-body systems with a tree tensor network. Phys. Rev. A 2006, 74, 022320. [Google Scholar] [CrossRef]
- Tagliacozzo, L.; Evenbly, G.; Vidal, G. Simulation of two-dimensional quantum systems using a tree tensor network that exploitsthe entropic area law. Phys. Rev. B 2009, 80, 235127. [Google Scholar] [CrossRef]
- Murg, V. Simulating strongly correlated quantum systems with tree tensor networks. Phys. Rev. B 2010, 82, 205105. [Google Scholar] [CrossRef]
- Dumitrescu, E. Tree tensor network approach to simulating Shor’s algorithm. Phys. Rev. A 2017, 96, 062322. [Google Scholar] [CrossRef]
- Lopez-Piqueres, J.; Ware, B.; Vasseur, R. Mean-field entanglement transitions in random tree tensor networks. Phys. Rev. B 2020, 102, 064202. [Google Scholar] [CrossRef]
- Wall, M.L.; D’Aguanno, G. Tree-tensor-network classifiers for machine learning: From quantum inspired to quantum assisted. Phys. Rev. A 2021, 104, 042408. [Google Scholar] [CrossRef]
- Yu, S.; Liu, N.L. Entanglement Detection by Local Orthogonal Observables. Phys. Rev. Lett. 2005, 95, 150504. [Google Scholar] [CrossRef]
- Kalev, A.; Gour, G. Mutually unbiased measurements in finite dimensions. New J. Phys. 2014, 16, 053038. [Google Scholar] [CrossRef]
- Gour, G.; Kalev, A. Construction of all general symmetric informationally complete measurements. J. Phys. A Math. Theor. 2014, 47, 335302. [Google Scholar] [CrossRef]
The Number of Separable States | |
---|---|
5 | 128 |
4 | 256 |
3 | 512 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, J.; He, K. Construction of Inequalities for Network Quantum Steering Detection. Axioms 2025, 14, 615. https://doi.org/10.3390/axioms14080615
Ji J, He K. Construction of Inequalities for Network Quantum Steering Detection. Axioms. 2025; 14(8):615. https://doi.org/10.3390/axioms14080615
Chicago/Turabian StyleJi, Jia, and Kan He. 2025. "Construction of Inequalities for Network Quantum Steering Detection" Axioms 14, no. 8: 615. https://doi.org/10.3390/axioms14080615
APA StyleJi, J., & He, K. (2025). Construction of Inequalities for Network Quantum Steering Detection. Axioms, 14(8), 615. https://doi.org/10.3390/axioms14080615